子空间排列与Cherednik代数

Stephen Griffeth
{"title":"子空间排列与Cherednik代数","authors":"Stephen Griffeth","doi":"10.1093/IMRN/RNAB016","DOIUrl":null,"url":null,"abstract":"The purpose of this article is to study the relationship between numerical invariants of certain subspace arrangements coming from reflection groups and numerical invariants arising in the representation theory of Cherednik algebras. For instance, we observe that knowledge of the equivariant graded Betti numbers (in the sense of commutative algebra) of any irreducible representation in category O is equivalent to knowledge of the Kazhdan-Lusztig character of the irreducible object. We then explore the extent to which Cherednik algebra techniques may be applied to ideals of linear subspace arrangements: we determine when the radical of the polynomial representation of the Cherednik algebra is a radical ideal, and, for the cyclotomic rational Cherednik algebra, determine the socle of the polynomial representation and characterize when it is a radical ideal. The subspace arrangements that arise include various generalizations of the k-equals arrangment. In the case of the socle, we give an explicit vector space basis in terms of certain specializations of non-symmetric Jack polynomials, which in particular determines its minimal generators and Hilbert series and answers a question posed by Feigin and Shramov. These results suggest several conjectures and questions about the submodule structure of the polynomial representation of the Cherednik algebra.","PeriodicalId":275006,"journal":{"name":"arXiv: Representation Theory","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Subspace Arrangements and Cherednik Algebras\",\"authors\":\"Stephen Griffeth\",\"doi\":\"10.1093/IMRN/RNAB016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this article is to study the relationship between numerical invariants of certain subspace arrangements coming from reflection groups and numerical invariants arising in the representation theory of Cherednik algebras. For instance, we observe that knowledge of the equivariant graded Betti numbers (in the sense of commutative algebra) of any irreducible representation in category O is equivalent to knowledge of the Kazhdan-Lusztig character of the irreducible object. We then explore the extent to which Cherednik algebra techniques may be applied to ideals of linear subspace arrangements: we determine when the radical of the polynomial representation of the Cherednik algebra is a radical ideal, and, for the cyclotomic rational Cherednik algebra, determine the socle of the polynomial representation and characterize when it is a radical ideal. The subspace arrangements that arise include various generalizations of the k-equals arrangment. In the case of the socle, we give an explicit vector space basis in terms of certain specializations of non-symmetric Jack polynomials, which in particular determines its minimal generators and Hilbert series and answers a question posed by Feigin and Shramov. These results suggest several conjectures and questions about the submodule structure of the polynomial representation of the Cherednik algebra.\",\"PeriodicalId\":275006,\"journal\":{\"name\":\"arXiv: Representation Theory\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Representation Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/IMRN/RNAB016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/IMRN/RNAB016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文的目的是研究来自反射群的某些子空间排列的数值不变量与Cherednik代数表示理论中出现的数值不变量之间的关系。例如,我们观察到在O范畴中任何不可约表示的等变梯度Betti数(交换代数意义上的)的知识等价于不可约对象的Kazhdan-Lusztig特征的知识。然后,我们探索Cherednik代数技术在多大程度上可以应用于线性子空间排列的理想:我们确定Cherednik代数的多项式表示的根何时是根理想,并且,对于切环有理Cherednik代数,确定多项式表示的根并表征它何时是根理想。由此产生的子空间排列包括k =排列的各种推广。在社会的情况下,我们给出了一个明确的向量空间基的非对称杰克多项式的某些专门化,特别是确定了它的最小生成器和希尔伯特级数,并回答了Feigin和Shramov提出的一个问题。这些结果对Cherednik代数的多项式表示的子模块结构提出了一些猜想和问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Subspace Arrangements and Cherednik Algebras
The purpose of this article is to study the relationship between numerical invariants of certain subspace arrangements coming from reflection groups and numerical invariants arising in the representation theory of Cherednik algebras. For instance, we observe that knowledge of the equivariant graded Betti numbers (in the sense of commutative algebra) of any irreducible representation in category O is equivalent to knowledge of the Kazhdan-Lusztig character of the irreducible object. We then explore the extent to which Cherednik algebra techniques may be applied to ideals of linear subspace arrangements: we determine when the radical of the polynomial representation of the Cherednik algebra is a radical ideal, and, for the cyclotomic rational Cherednik algebra, determine the socle of the polynomial representation and characterize when it is a radical ideal. The subspace arrangements that arise include various generalizations of the k-equals arrangment. In the case of the socle, we give an explicit vector space basis in terms of certain specializations of non-symmetric Jack polynomials, which in particular determines its minimal generators and Hilbert series and answers a question posed by Feigin and Shramov. These results suggest several conjectures and questions about the submodule structure of the polynomial representation of the Cherednik algebra.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信