基于事件触发采样的分布式自适应共识:一种基于边缘的方法

Dongdong Yue, S. Baldi, Wenying Xu, Jinde Cao
{"title":"基于事件触发采样的分布式自适应共识:一种基于边缘的方法","authors":"Dongdong Yue, S. Baldi, Wenying Xu, Jinde Cao","doi":"10.1109/ICNSC52481.2021.9702132","DOIUrl":null,"url":null,"abstract":"This paper addresses distributed adaptive consensus control of general linear multiagent systems (MASs) under event-triggered sampling mechanism. We propose a novel edge-based method in which, for each communication link, an adaptive coupling gain channel and a sampling triggering function are co-designed. The benefits are that the proposed method requires neither the global knowledge of the network eigenvalues for gain selection, nor continuously state sampling for control.","PeriodicalId":129062,"journal":{"name":"2021 IEEE International Conference on Networking, Sensing and Control (ICNSC)","volume":"119 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distributed Adaptive Consensus via Event-triggered Sampling: An Edge-based Method\",\"authors\":\"Dongdong Yue, S. Baldi, Wenying Xu, Jinde Cao\",\"doi\":\"10.1109/ICNSC52481.2021.9702132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses distributed adaptive consensus control of general linear multiagent systems (MASs) under event-triggered sampling mechanism. We propose a novel edge-based method in which, for each communication link, an adaptive coupling gain channel and a sampling triggering function are co-designed. The benefits are that the proposed method requires neither the global knowledge of the network eigenvalues for gain selection, nor continuously state sampling for control.\",\"PeriodicalId\":129062,\"journal\":{\"name\":\"2021 IEEE International Conference on Networking, Sensing and Control (ICNSC)\",\"volume\":\"119 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Networking, Sensing and Control (ICNSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNSC52481.2021.9702132\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Networking, Sensing and Control (ICNSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNSC52481.2021.9702132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了一般线性多智能体系统在事件触发抽样机制下的分布式自适应一致性控制问题。我们提出了一种新的基于边缘的方法,在每个通信链路上,共同设计一个自适应耦合增益通道和一个采样触发函数。该方法的优点是既不需要网络特征值的全局知识来进行增益选择,也不需要连续状态采样来进行控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distributed Adaptive Consensus via Event-triggered Sampling: An Edge-based Method
This paper addresses distributed adaptive consensus control of general linear multiagent systems (MASs) under event-triggered sampling mechanism. We propose a novel edge-based method in which, for each communication link, an adaptive coupling gain channel and a sampling triggering function are co-designed. The benefits are that the proposed method requires neither the global knowledge of the network eigenvalues for gain selection, nor continuously state sampling for control.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信