{"title":"面板数据贝叶斯分组随机效应预测","authors":"Boyuan Zhang","doi":"10.2139/ssrn.3681672","DOIUrl":null,"url":null,"abstract":"In this paper, we estimate and leverage latent constant group structure to generate the point, set, and density forecasts for short dynamic panel data. We implement a nonparametric Bayesian approach to simultaneously identify coefficients and group membership in the random effects which are heterogeneous across groups but fixed within a group. This method allows us to incorporate subjective prior knowledge on the group structure that potentially improves the predictive accuracy. In Monte Carlo experiments, we demonstrate that our Bayesian grouped random effects (BGRE) estimators produce accurate estimates and score predictive gains over standard panel data estimators. With a data-driven group structure, the BGRE estimators exhibit comparable accuracy of clustering with the nonsupervised machine learning algorithm Kmeans and outperform Kmeans in a two-step procedure. In the empirical analysis, we apply our method to forecast the investment rate across a broad range of firms and illustrate that the estimated latent group structure facilitate forecasts relative to standard panel data estimators.","PeriodicalId":264857,"journal":{"name":"ERN: Semiparametric & Nonparametric Methods (Topic)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Forecasting with Bayesian Grouped Random Effects in Panel Data\",\"authors\":\"Boyuan Zhang\",\"doi\":\"10.2139/ssrn.3681672\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we estimate and leverage latent constant group structure to generate the point, set, and density forecasts for short dynamic panel data. We implement a nonparametric Bayesian approach to simultaneously identify coefficients and group membership in the random effects which are heterogeneous across groups but fixed within a group. This method allows us to incorporate subjective prior knowledge on the group structure that potentially improves the predictive accuracy. In Monte Carlo experiments, we demonstrate that our Bayesian grouped random effects (BGRE) estimators produce accurate estimates and score predictive gains over standard panel data estimators. With a data-driven group structure, the BGRE estimators exhibit comparable accuracy of clustering with the nonsupervised machine learning algorithm Kmeans and outperform Kmeans in a two-step procedure. In the empirical analysis, we apply our method to forecast the investment rate across a broad range of firms and illustrate that the estimated latent group structure facilitate forecasts relative to standard panel data estimators.\",\"PeriodicalId\":264857,\"journal\":{\"name\":\"ERN: Semiparametric & Nonparametric Methods (Topic)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Semiparametric & Nonparametric Methods (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3681672\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Semiparametric & Nonparametric Methods (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3681672","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Forecasting with Bayesian Grouped Random Effects in Panel Data
In this paper, we estimate and leverage latent constant group structure to generate the point, set, and density forecasts for short dynamic panel data. We implement a nonparametric Bayesian approach to simultaneously identify coefficients and group membership in the random effects which are heterogeneous across groups but fixed within a group. This method allows us to incorporate subjective prior knowledge on the group structure that potentially improves the predictive accuracy. In Monte Carlo experiments, we demonstrate that our Bayesian grouped random effects (BGRE) estimators produce accurate estimates and score predictive gains over standard panel data estimators. With a data-driven group structure, the BGRE estimators exhibit comparable accuracy of clustering with the nonsupervised machine learning algorithm Kmeans and outperform Kmeans in a two-step procedure. In the empirical analysis, we apply our method to forecast the investment rate across a broad range of firms and illustrate that the estimated latent group structure facilitate forecasts relative to standard panel data estimators.