r- and-thgr中扩散问题的迭代解法几何

D. B. MacMillan
{"title":"r- and-thgr中扩散问题的迭代解法几何","authors":"D. B. MacMillan","doi":"10.1145/800257.808906","DOIUrl":null,"url":null,"abstract":"This paper compares three iteration methods for computing approximately a steady-state solution of the diffusion equation, in a pie-shaped region of the plane, using a finite mesh based on the r--and-thgr; coordinate system. The methods are successive line overrelaxation along curves of constant radius, successive line relaxation along radii, and alternating-direction-implicit iteration. It is concluded that the first-named of these three methods is superior, in that it is expected to converge faster for most problems.","PeriodicalId":167902,"journal":{"name":"Proceedings of the 1964 19th ACM national conference","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1964-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Iterative methods for solution of diffusion problems in r--and-thgr; geometry\",\"authors\":\"D. B. MacMillan\",\"doi\":\"10.1145/800257.808906\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper compares three iteration methods for computing approximately a steady-state solution of the diffusion equation, in a pie-shaped region of the plane, using a finite mesh based on the r--and-thgr; coordinate system. The methods are successive line overrelaxation along curves of constant radius, successive line relaxation along radii, and alternating-direction-implicit iteration. It is concluded that the first-named of these three methods is superior, in that it is expected to converge faster for most problems.\",\"PeriodicalId\":167902,\"journal\":{\"name\":\"Proceedings of the 1964 19th ACM national conference\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1964-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 1964 19th ACM national conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/800257.808906\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1964 19th ACM national conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/800257.808906","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文比较了利用基于r- and-thgr的有限网格在平面饼状区域内近似计算扩散方程稳态解的三种迭代方法;坐标系统。方法有沿等半径曲线的连续过松弛法、沿半径曲线的连续松弛法和交替方向隐式迭代法。结果表明,在这三种方法中,第一种方法更为优越,因为它对大多数问题的收敛速度更快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Iterative methods for solution of diffusion problems in r--and-thgr; geometry
This paper compares three iteration methods for computing approximately a steady-state solution of the diffusion equation, in a pie-shaped region of the plane, using a finite mesh based on the r--and-thgr; coordinate system. The methods are successive line overrelaxation along curves of constant radius, successive line relaxation along radii, and alternating-direction-implicit iteration. It is concluded that the first-named of these three methods is superior, in that it is expected to converge faster for most problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信