分级布隆过滤器阵列(HBA):一种新颖的、可扩展的元数据管理系统,用于基于集群的大型存储

Yifeng Zhu, Hong Jiang, Jun Wang
{"title":"分级布隆过滤器阵列(HBA):一种新颖的、可扩展的元数据管理系统,用于基于集群的大型存储","authors":"Yifeng Zhu, Hong Jiang, Jun Wang","doi":"10.1109/CLUSTR.2004.1392614","DOIUrl":null,"url":null,"abstract":"An efficient and distributed scheme for file mapping or file lookup scheme is critical in decentralizing metadata management within a group of metadata servers. This work presents a technique called HBA (hierarchical Bloom filter arrays) to map file names to the servers holding their metadata. Two levels of probabilistic arrays, i.e., Bloom filter arrays, with different accuracies are used on each metadata server. One array, with lower accuracy and representing the distribution of the entire metadata, trades accuracy for significantly reduced memory overhead, while the other array, with higher accuracy, caches partial distribution information and exploits the temporal locality of file access patterns. Extensive trace-driven simulations have shown our HBA design to be highly effective and efficient in improving performance and scalability of file systems in clusters with 1,000 to 10,000 nodes (or superclusters).","PeriodicalId":123512,"journal":{"name":"2004 IEEE International Conference on Cluster Computing (IEEE Cat. No.04EX935)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"56","resultStr":"{\"title\":\"Hierarchical Bloom filter arrays (HBA): a novel, scalable metadata management system for large cluster-based storage\",\"authors\":\"Yifeng Zhu, Hong Jiang, Jun Wang\",\"doi\":\"10.1109/CLUSTR.2004.1392614\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An efficient and distributed scheme for file mapping or file lookup scheme is critical in decentralizing metadata management within a group of metadata servers. This work presents a technique called HBA (hierarchical Bloom filter arrays) to map file names to the servers holding their metadata. Two levels of probabilistic arrays, i.e., Bloom filter arrays, with different accuracies are used on each metadata server. One array, with lower accuracy and representing the distribution of the entire metadata, trades accuracy for significantly reduced memory overhead, while the other array, with higher accuracy, caches partial distribution information and exploits the temporal locality of file access patterns. Extensive trace-driven simulations have shown our HBA design to be highly effective and efficient in improving performance and scalability of file systems in clusters with 1,000 to 10,000 nodes (or superclusters).\",\"PeriodicalId\":123512,\"journal\":{\"name\":\"2004 IEEE International Conference on Cluster Computing (IEEE Cat. No.04EX935)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"56\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2004 IEEE International Conference on Cluster Computing (IEEE Cat. No.04EX935)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CLUSTR.2004.1392614\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2004 IEEE International Conference on Cluster Computing (IEEE Cat. No.04EX935)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLUSTR.2004.1392614","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 56

摘要

在一组元数据服务器中分散元数据管理,一个高效的分布式文件映射方案或文件查找方案至关重要。这项工作提出了一种称为HBA(分层Bloom过滤器阵列)的技术,将文件名映射到保存其元数据的服务器。在每个元数据服务器上使用两种不同精度的概率数组,即布隆过滤器数组。一个精度较低的数组表示整个元数据的分布,它以准确性换取显著减少的内存开销,而另一个精度较高的数组缓存部分分布信息,并利用文件访问模式的临时局部性。广泛的跟踪驱动模拟表明,我们的HBA设计在具有1,000到10,000个节点(或超级集群)的集群中非常有效地提高了文件系统的性能和可伸缩性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hierarchical Bloom filter arrays (HBA): a novel, scalable metadata management system for large cluster-based storage
An efficient and distributed scheme for file mapping or file lookup scheme is critical in decentralizing metadata management within a group of metadata servers. This work presents a technique called HBA (hierarchical Bloom filter arrays) to map file names to the servers holding their metadata. Two levels of probabilistic arrays, i.e., Bloom filter arrays, with different accuracies are used on each metadata server. One array, with lower accuracy and representing the distribution of the entire metadata, trades accuracy for significantly reduced memory overhead, while the other array, with higher accuracy, caches partial distribution information and exploits the temporal locality of file access patterns. Extensive trace-driven simulations have shown our HBA design to be highly effective and efficient in improving performance and scalability of file systems in clusters with 1,000 to 10,000 nodes (or superclusters).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信