空间不变系统的最优非线性分布控制

N. Karlsson, Bassam Bamieh
{"title":"空间不变系统的最优非线性分布控制","authors":"N. Karlsson, Bassam Bamieh","doi":"10.1109/CDC.2001.980891","DOIUrl":null,"url":null,"abstract":"We consider optimal distributed control for linear distributed systems with non-quadratic performance criteria expressed as a power series. Using power series methods, we derive a recursive procedure to obtain the successive power series terms of the optimal value function and state feedback. In the case of spatially invariant systems we show how the state feedback power series terms represented as tensors can be easily constructed using multi-dimensional Fourier transforms.","PeriodicalId":131411,"journal":{"name":"Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228)","volume":"17 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Optimal nonlinear distributed control of spatially-invariant systems\",\"authors\":\"N. Karlsson, Bassam Bamieh\",\"doi\":\"10.1109/CDC.2001.980891\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider optimal distributed control for linear distributed systems with non-quadratic performance criteria expressed as a power series. Using power series methods, we derive a recursive procedure to obtain the successive power series terms of the optimal value function and state feedback. In the case of spatially invariant systems we show how the state feedback power series terms represented as tensors can be easily constructed using multi-dimensional Fourier transforms.\",\"PeriodicalId\":131411,\"journal\":{\"name\":\"Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228)\",\"volume\":\"17 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDC.2001.980891\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2001.980891","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

研究了一类非二次性能指标表示为幂级数的线性分布式系统的最优分布控制问题。利用幂级数方法,导出了一种求最优值函数和状态反馈连续幂级数项的递推方法。在空间不变系统的情况下,我们展示了如何使用多维傅里叶变换轻松地将状态反馈幂级数项表示为张量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal nonlinear distributed control of spatially-invariant systems
We consider optimal distributed control for linear distributed systems with non-quadratic performance criteria expressed as a power series. Using power series methods, we derive a recursive procedure to obtain the successive power series terms of the optimal value function and state feedback. In the case of spatially invariant systems we show how the state feedback power series terms represented as tensors can be easily constructed using multi-dimensional Fourier transforms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信