气候变化及其影响的数据挖掘

A. Ganguly, K. Steinhaeuser
{"title":"气候变化及其影响的数据挖掘","authors":"A. Ganguly, K. Steinhaeuser","doi":"10.1109/ICDMW.2008.30","DOIUrl":null,"url":null,"abstract":"Knowledge discovery from temporal, spatial and spatiotemporal data is critical for climate change science and climate impacts. Climate statistics is a mature area. However, recent growth in observations and model outputs, combined with the increased availability of geographical data, presents new opportunities for data miners. This paper maps climate requirements to solutions available in temporal, spatial and spatiotemporal data mining. The challenges result from long-range, long-memory and possibly nonlinear dependence, nonlinear dynamical behavior, presence of thresholds, importance of extreme events or extreme regional stresses caused by global climate change, uncertainty quantification, and the interaction of climate change with the natural and built environments. This paper makes a case for the development of novel algorithms to address these issues, discusses the recent literature, and proposes new directions. An illustrative case study presented here suggests that even relatively simple data mining approaches can provide new scientific insights with high societal impacts.","PeriodicalId":175955,"journal":{"name":"2008 IEEE International Conference on Data Mining Workshops","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"75","resultStr":"{\"title\":\"Data Mining for Climate Change and Impacts\",\"authors\":\"A. Ganguly, K. Steinhaeuser\",\"doi\":\"10.1109/ICDMW.2008.30\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Knowledge discovery from temporal, spatial and spatiotemporal data is critical for climate change science and climate impacts. Climate statistics is a mature area. However, recent growth in observations and model outputs, combined with the increased availability of geographical data, presents new opportunities for data miners. This paper maps climate requirements to solutions available in temporal, spatial and spatiotemporal data mining. The challenges result from long-range, long-memory and possibly nonlinear dependence, nonlinear dynamical behavior, presence of thresholds, importance of extreme events or extreme regional stresses caused by global climate change, uncertainty quantification, and the interaction of climate change with the natural and built environments. This paper makes a case for the development of novel algorithms to address these issues, discusses the recent literature, and proposes new directions. An illustrative case study presented here suggests that even relatively simple data mining approaches can provide new scientific insights with high societal impacts.\",\"PeriodicalId\":175955,\"journal\":{\"name\":\"2008 IEEE International Conference on Data Mining Workshops\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"75\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE International Conference on Data Mining Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDMW.2008.30\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Conference on Data Mining Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2008.30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 75

摘要

从时间、空间和时空数据中发现知识对于气候变化科学和气候影响至关重要。气候统计是一个成熟的领域。然而,最近观测和模式产出的增长,加上地理数据的可用性增加,为数据挖掘者提供了新的机会。本文将气候需求映射到时间、空间和时空数据挖掘中可用的解决方案。这些挑战来自于长程、长记忆和可能的非线性依赖、非线性动力学行为、阈值的存在、全球气候变化引起的极端事件或极端区域应力的重要性、不确定性量化以及气候变化与自然和建筑环境的相互作用。本文为解决这些问题的新算法的发展提出了一个案例,讨论了最近的文献,并提出了新的方向。这里提出的一个说明性案例研究表明,即使是相对简单的数据挖掘方法也可以提供具有高社会影响的新科学见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data Mining for Climate Change and Impacts
Knowledge discovery from temporal, spatial and spatiotemporal data is critical for climate change science and climate impacts. Climate statistics is a mature area. However, recent growth in observations and model outputs, combined with the increased availability of geographical data, presents new opportunities for data miners. This paper maps climate requirements to solutions available in temporal, spatial and spatiotemporal data mining. The challenges result from long-range, long-memory and possibly nonlinear dependence, nonlinear dynamical behavior, presence of thresholds, importance of extreme events or extreme regional stresses caused by global climate change, uncertainty quantification, and the interaction of climate change with the natural and built environments. This paper makes a case for the development of novel algorithms to address these issues, discusses the recent literature, and proposes new directions. An illustrative case study presented here suggests that even relatively simple data mining approaches can provide new scientific insights with high societal impacts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信