室内移动机器人的一种映射方法

Haoxin Liu, Yonghui Zhang, Yibo Cao
{"title":"室内移动机器人的一种映射方法","authors":"Haoxin Liu, Yonghui Zhang, Yibo Cao","doi":"10.1145/3424978.3425050","DOIUrl":null,"url":null,"abstract":"Simultaneous location and mapping (SLAM) is a core issue in the field of mobile robots. This paper proposes an endpoint features based mapping method for an indoor mobile robot. The robot collects sensor information over some time to build a local map, and the local maps are fused to get a global map. This article defines the concept of endpoints and gives each endpoint a unique descriptor. Local endpoints and global endpoints are compared using descriptor matching and brute force matching to obtain a calibration. The local grids are merged into the global grids if the calibration is less than a threshold. Otherwise, running a pose correction for the mobile robot. Experiments show that in various indoor environments, this mapping method can obtain a grid map that is similar to the actual environment, which supports the mobile robot to complete navigation, obstacle avoidance, planning, and other works.","PeriodicalId":178822,"journal":{"name":"Proceedings of the 4th International Conference on Computer Science and Application Engineering","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Mapping Method for Indoor Mobile Robot\",\"authors\":\"Haoxin Liu, Yonghui Zhang, Yibo Cao\",\"doi\":\"10.1145/3424978.3425050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Simultaneous location and mapping (SLAM) is a core issue in the field of mobile robots. This paper proposes an endpoint features based mapping method for an indoor mobile robot. The robot collects sensor information over some time to build a local map, and the local maps are fused to get a global map. This article defines the concept of endpoints and gives each endpoint a unique descriptor. Local endpoints and global endpoints are compared using descriptor matching and brute force matching to obtain a calibration. The local grids are merged into the global grids if the calibration is less than a threshold. Otherwise, running a pose correction for the mobile robot. Experiments show that in various indoor environments, this mapping method can obtain a grid map that is similar to the actual environment, which supports the mobile robot to complete navigation, obstacle avoidance, planning, and other works.\",\"PeriodicalId\":178822,\"journal\":{\"name\":\"Proceedings of the 4th International Conference on Computer Science and Application Engineering\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 4th International Conference on Computer Science and Application Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3424978.3425050\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 4th International Conference on Computer Science and Application Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3424978.3425050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

同时定位与制图(SLAM)是移动机器人领域的一个核心问题。提出了一种基于端点特征的室内移动机器人映射方法。机器人在一段时间内收集传感器信息以构建局部地图,并将局部地图融合以获得全局地图。本文定义了端点的概念,并为每个端点提供了唯一的描述符。通过描述符匹配和蛮力匹配对局部端点和全局端点进行比较,得到标定结果。如果校正值小于阈值,则将局部网格合并到全局网格中。否则,对移动机器人进行姿态校正。实验表明,在各种室内环境下,该测绘方法可以获得与实际环境相似的网格地图,支持移动机器人完成导航、避障、规划等工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Mapping Method for Indoor Mobile Robot
Simultaneous location and mapping (SLAM) is a core issue in the field of mobile robots. This paper proposes an endpoint features based mapping method for an indoor mobile robot. The robot collects sensor information over some time to build a local map, and the local maps are fused to get a global map. This article defines the concept of endpoints and gives each endpoint a unique descriptor. Local endpoints and global endpoints are compared using descriptor matching and brute force matching to obtain a calibration. The local grids are merged into the global grids if the calibration is less than a threshold. Otherwise, running a pose correction for the mobile robot. Experiments show that in various indoor environments, this mapping method can obtain a grid map that is similar to the actual environment, which supports the mobile robot to complete navigation, obstacle avoidance, planning, and other works.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信