使用数据转换进行低延迟时间序列分析

Henggang Cui, K. Keeton, Indrajit Roy, K. Viswanathan, G. Ganger
{"title":"使用数据转换进行低延迟时间序列分析","authors":"Henggang Cui, K. Keeton, Indrajit Roy, K. Viswanathan, G. Ganger","doi":"10.1145/2806777.2806839","DOIUrl":null,"url":null,"abstract":"Time series analysis is commonly used when monitoring data centers, networks, weather, and even human patients. In most cases, the raw time series data is massive, from millions to billions of data points, and yet interactive analyses require low (e.g., sub-second) latency. Aperture transforms raw time series data, during ingest, into compact summarized representations that it can use to efficiently answer queries at runtime. Aperture handles a range of complex queries, from correlating hundreds of lengthy time series to predicting anomalies in the data. Aperture achieves much of its high performance by executing queries on data summaries, while providing a bound on the information lost when transforming data. By doing so, Aperture can reduce query latency as well as the data that needs to be stored and analyzed to answer a query. Our experiments on real data show that Aperture can provide one to four orders of magnitude lower query response time, while incurring only 10% ingest time overhead and less than 20% error in accuracy.","PeriodicalId":275158,"journal":{"name":"Proceedings of the Sixth ACM Symposium on Cloud Computing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Using data transformations for low-latency time series analysis\",\"authors\":\"Henggang Cui, K. Keeton, Indrajit Roy, K. Viswanathan, G. Ganger\",\"doi\":\"10.1145/2806777.2806839\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Time series analysis is commonly used when monitoring data centers, networks, weather, and even human patients. In most cases, the raw time series data is massive, from millions to billions of data points, and yet interactive analyses require low (e.g., sub-second) latency. Aperture transforms raw time series data, during ingest, into compact summarized representations that it can use to efficiently answer queries at runtime. Aperture handles a range of complex queries, from correlating hundreds of lengthy time series to predicting anomalies in the data. Aperture achieves much of its high performance by executing queries on data summaries, while providing a bound on the information lost when transforming data. By doing so, Aperture can reduce query latency as well as the data that needs to be stored and analyzed to answer a query. Our experiments on real data show that Aperture can provide one to four orders of magnitude lower query response time, while incurring only 10% ingest time overhead and less than 20% error in accuracy.\",\"PeriodicalId\":275158,\"journal\":{\"name\":\"Proceedings of the Sixth ACM Symposium on Cloud Computing\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Sixth ACM Symposium on Cloud Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2806777.2806839\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Sixth ACM Symposium on Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2806777.2806839","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

时间序列分析通常用于监控数据中心、网络、天气甚至人类患者。在大多数情况下,原始时间序列数据是巨大的,从数百万到数十亿个数据点,而交互式分析需要较低的延迟(例如,亚秒级)。Aperture将原始时间序列数据在摄取过程中转换为紧凑的汇总表示,以便在运行时有效地回答查询。Aperture可以处理一系列复杂的查询,从关联数百个长时间序列到预测数据中的异常情况。Aperture通过在数据摘要上执行查询实现了大部分高性能,同时提供了转换数据时丢失的信息的限制。通过这样做,Aperture可以减少查询延迟以及需要存储和分析的数据来回答查询。我们在真实数据上的实验表明,Aperture可以提供1到4个数量级的查询响应时间,同时只产生10%的摄取时间开销和不到20%的精度误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using data transformations for low-latency time series analysis
Time series analysis is commonly used when monitoring data centers, networks, weather, and even human patients. In most cases, the raw time series data is massive, from millions to billions of data points, and yet interactive analyses require low (e.g., sub-second) latency. Aperture transforms raw time series data, during ingest, into compact summarized representations that it can use to efficiently answer queries at runtime. Aperture handles a range of complex queries, from correlating hundreds of lengthy time series to predicting anomalies in the data. Aperture achieves much of its high performance by executing queries on data summaries, while providing a bound on the information lost when transforming data. By doing so, Aperture can reduce query latency as well as the data that needs to be stored and analyzed to answer a query. Our experiments on real data show that Aperture can provide one to four orders of magnitude lower query response time, while incurring only 10% ingest time overhead and less than 20% error in accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信