偏序集度量的综合征解码复杂度的界

Marcelo Firer, Jerry Anderson Pinheiro
{"title":"偏序集度量的综合征解码复杂度的界","authors":"Marcelo Firer, Jerry Anderson Pinheiro","doi":"10.1109/ITW.2015.7133130","DOIUrl":null,"url":null,"abstract":"In this work we show how to decompose a linear code relatively to any given poset metric. We prove that the complexity of syndrome decoding is determined by a maximal (primary) such decomposition and then show that a refinement of a partial order leads to a refinement of the primary decomposition. Using this and considering already known results about hierarchical posets, we can establish upper and lower bounds for the complexity of syndrome decoding relatively to a poset metric.","PeriodicalId":174797,"journal":{"name":"2015 IEEE Information Theory Workshop (ITW)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Bounds for complexity of syndrome decoding for poset metrics\",\"authors\":\"Marcelo Firer, Jerry Anderson Pinheiro\",\"doi\":\"10.1109/ITW.2015.7133130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we show how to decompose a linear code relatively to any given poset metric. We prove that the complexity of syndrome decoding is determined by a maximal (primary) such decomposition and then show that a refinement of a partial order leads to a refinement of the primary decomposition. Using this and considering already known results about hierarchical posets, we can establish upper and lower bounds for the complexity of syndrome decoding relatively to a poset metric.\",\"PeriodicalId\":174797,\"journal\":{\"name\":\"2015 IEEE Information Theory Workshop (ITW)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Information Theory Workshop (ITW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITW.2015.7133130\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Information Theory Workshop (ITW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITW.2015.7133130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在这项工作中,我们展示了如何分解线性码相对于任何给定的偏置度量。我们证明了综合征解码的复杂度是由一个极大的(初等)分解决定的,然后证明了一个偏阶的细化导致初等分解的细化。利用这一点,并考虑到已有的关于层次偏序集的结果,我们可以建立相对于偏序集度量的综合征解码复杂性的上界和下界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bounds for complexity of syndrome decoding for poset metrics
In this work we show how to decompose a linear code relatively to any given poset metric. We prove that the complexity of syndrome decoding is determined by a maximal (primary) such decomposition and then show that a refinement of a partial order leads to a refinement of the primary decomposition. Using this and considering already known results about hierarchical posets, we can establish upper and lower bounds for the complexity of syndrome decoding relatively to a poset metric.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信