使用枚举编码的k子集和

V. Parque, T. Miyashita
{"title":"使用枚举编码的k子集和","authors":"V. Parque, T. Miyashita","doi":"10.1109/ISSPIT.2016.7886013","DOIUrl":null,"url":null,"abstract":"Being a significant construct in a wide range of combinatorial problems, the k-subset sum problem (k-SSP) computes k-element subsets, out of an n-element set, satisfying a user-defined aggregation value. In this paper, we formulate the k-subset sum problem as a search (optimization) problem over the space of integers associated with combination elements. And by using rigorous computational experiments using the search space over more than 1014 integer numbers, we show that our approach is effective and efficient: it is feasible to find any combination with a user-defined sum within 104 function evaluations by using a gradient-free optimization algorithm. Our scheme opens the door to further advance the understanding of combinatorial problems by improved/tailored gradient-free optimization algorithms based on enumerative encoding. Also, our approach realizes the practical building block for combinatorial problems in planning and operations research using k-SSP concepts.","PeriodicalId":371691,"journal":{"name":"2016 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"On k-subset sum using enumerative encoding\",\"authors\":\"V. Parque, T. Miyashita\",\"doi\":\"10.1109/ISSPIT.2016.7886013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Being a significant construct in a wide range of combinatorial problems, the k-subset sum problem (k-SSP) computes k-element subsets, out of an n-element set, satisfying a user-defined aggregation value. In this paper, we formulate the k-subset sum problem as a search (optimization) problem over the space of integers associated with combination elements. And by using rigorous computational experiments using the search space over more than 1014 integer numbers, we show that our approach is effective and efficient: it is feasible to find any combination with a user-defined sum within 104 function evaluations by using a gradient-free optimization algorithm. Our scheme opens the door to further advance the understanding of combinatorial problems by improved/tailored gradient-free optimization algorithms based on enumerative encoding. Also, our approach realizes the practical building block for combinatorial problems in planning and operations research using k-SSP concepts.\",\"PeriodicalId\":371691,\"journal\":{\"name\":\"2016 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSPIT.2016.7886013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPIT.2016.7886013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

k子集和问题(k-SSP)是组合问题中的一个重要构造,它从n个元素集合中计算k个元素子集,满足用户定义的聚合值。在本文中,我们将k子集和问题表述为一个在与组合元素相关的整数空间上的搜索(优化)问题。通过使用超过1014个整数的搜索空间进行严格的计算实验,我们证明了我们的方法是有效和高效的:通过使用无梯度优化算法,可以在104个函数求值中找到与用户定义和的任何组合。我们的方案通过基于枚举编码的改进/定制的无梯度优化算法,为进一步推进对组合问题的理解打开了大门。此外,我们的方法使用k-SSP概念实现了规划和运筹学中组合问题的实用构建块。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On k-subset sum using enumerative encoding
Being a significant construct in a wide range of combinatorial problems, the k-subset sum problem (k-SSP) computes k-element subsets, out of an n-element set, satisfying a user-defined aggregation value. In this paper, we formulate the k-subset sum problem as a search (optimization) problem over the space of integers associated with combination elements. And by using rigorous computational experiments using the search space over more than 1014 integer numbers, we show that our approach is effective and efficient: it is feasible to find any combination with a user-defined sum within 104 function evaluations by using a gradient-free optimization algorithm. Our scheme opens the door to further advance the understanding of combinatorial problems by improved/tailored gradient-free optimization algorithms based on enumerative encoding. Also, our approach realizes the practical building block for combinatorial problems in planning and operations research using k-SSP concepts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信