中国东南石坪川钼矿成矿与岩浆作用的成因联系

GSA Bulletin Pub Date : 2023-03-13 DOI:10.1130/b36600.1
Yan-Jun Li, Jun-hao Wei, Mengting Chen, Zheng-Hui Chen, Y. Lahaye, H. Zhang, T. Ulrich
{"title":"中国东南石坪川钼矿成矿与岩浆作用的成因联系","authors":"Yan-Jun Li, Jun-hao Wei, Mengting Chen, Zheng-Hui Chen, Y. Lahaye, H. Zhang, T. Ulrich","doi":"10.1130/b36600.1","DOIUrl":null,"url":null,"abstract":"Most molybdenum (Mo) deposits are considered to be associated with magmatic systems; however, their genetic link is not clearly resolved when using, for example, bulk sulfur (S) and lead (Pb) isotopes of sulfides dominated by pyrite separates. Here, we present microtextures and in situ trace-element results of pyrite, in situ S isotopic compositions of molybdenite and pyrite, and Pb isotopes of pyrite and K-feldspar determined by laser ablation−inductively coupled plasma−mass spectrometry (LA-ICP-MS) and multicollector (MC) LA-ICP-MS. Combined with geochronologic data for both the magmatism and Mo mineralization, these in situ methods allowed the genetic link between Mo mineralization and magmatism to be unraveled at Shipingchuan, SE China. The Shipingchuan deposit is characterized by molybdenite-quartz veins hosted by faults or fractures around a biotite K-feldspar granite. Zircon LA-ICP-MS U-Pb and molybdenite Re-Os dating results confirm that the biotite K-feldspar granite and mineralization were coeval and formed during the end of the Early Cretaceous (ca. 105 Ma), whereas postmineralization monzogranite porphyry dikes formed at 93.7 Ma. Pyrite shows a close mutual relationship with molybdenite and is characterized by Co-Ni-As-Te-Cu-Pb-Ag-Bi−rich cores (PyI) revealed by LA-ICP-MS data. Co/Ni and calculated (Se/S)fluid ratios for both cores (PyI) and rims (PyII) indicate a magmatic-hydrothermal origin. The in situ S isotopic compositions (δ34S) of molybdenite are 2.1‰ to 6.8‰, which are identical to those of molybdenite separates. PyI has δ34S values of −6.9‰ to 0.8‰, whereas PyII exhibits slightly more negative values of −7.5‰ to −0.2‰. These analyses indicate reliable results for in situ S isotopes in molybdenite, which could be more appropriate to constrain the origin of sulfur in hydrothermal fluids than results from pyrite analysis. The in situ S isotopic compositions of sulfides confirm a magmatic source for sulfur. The in situ Pb isotopic compositions of pyrite are consistent with those of K-feldspar from the biotite K-feldspar granite, indicating a common source. The heterogeneous As/Ni, As/Sb, and As/Bi values, as well as the variations of δ34S values of both PyI and PyII, indicate progressive oxidization of the hydrothermal fluids. These results illustrate that the metal-rich fluids were released from the granite and migrated along faults and fractures around the granite in an extensional setting. The precipitation of molybdenite-quartz veins at Shipingchuan was triggered by changes in temperatures and redox conditions, which were caused by mixing of magmatic fluids and meteoric water. Results in this study provide an example of tracing the link between Mo mineralization and magmatism using in situ S isotopic compositions of molybdenite and Pb isotopes of pyrite and K-feldspar.","PeriodicalId":242264,"journal":{"name":"GSA Bulletin","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Molybdenum mineralization genetically linked with magmatism at the Shipingchuan deposit, SE China\",\"authors\":\"Yan-Jun Li, Jun-hao Wei, Mengting Chen, Zheng-Hui Chen, Y. Lahaye, H. Zhang, T. Ulrich\",\"doi\":\"10.1130/b36600.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most molybdenum (Mo) deposits are considered to be associated with magmatic systems; however, their genetic link is not clearly resolved when using, for example, bulk sulfur (S) and lead (Pb) isotopes of sulfides dominated by pyrite separates. Here, we present microtextures and in situ trace-element results of pyrite, in situ S isotopic compositions of molybdenite and pyrite, and Pb isotopes of pyrite and K-feldspar determined by laser ablation−inductively coupled plasma−mass spectrometry (LA-ICP-MS) and multicollector (MC) LA-ICP-MS. Combined with geochronologic data for both the magmatism and Mo mineralization, these in situ methods allowed the genetic link between Mo mineralization and magmatism to be unraveled at Shipingchuan, SE China. The Shipingchuan deposit is characterized by molybdenite-quartz veins hosted by faults or fractures around a biotite K-feldspar granite. Zircon LA-ICP-MS U-Pb and molybdenite Re-Os dating results confirm that the biotite K-feldspar granite and mineralization were coeval and formed during the end of the Early Cretaceous (ca. 105 Ma), whereas postmineralization monzogranite porphyry dikes formed at 93.7 Ma. Pyrite shows a close mutual relationship with molybdenite and is characterized by Co-Ni-As-Te-Cu-Pb-Ag-Bi−rich cores (PyI) revealed by LA-ICP-MS data. Co/Ni and calculated (Se/S)fluid ratios for both cores (PyI) and rims (PyII) indicate a magmatic-hydrothermal origin. The in situ S isotopic compositions (δ34S) of molybdenite are 2.1‰ to 6.8‰, which are identical to those of molybdenite separates. PyI has δ34S values of −6.9‰ to 0.8‰, whereas PyII exhibits slightly more negative values of −7.5‰ to −0.2‰. These analyses indicate reliable results for in situ S isotopes in molybdenite, which could be more appropriate to constrain the origin of sulfur in hydrothermal fluids than results from pyrite analysis. The in situ S isotopic compositions of sulfides confirm a magmatic source for sulfur. The in situ Pb isotopic compositions of pyrite are consistent with those of K-feldspar from the biotite K-feldspar granite, indicating a common source. The heterogeneous As/Ni, As/Sb, and As/Bi values, as well as the variations of δ34S values of both PyI and PyII, indicate progressive oxidization of the hydrothermal fluids. These results illustrate that the metal-rich fluids were released from the granite and migrated along faults and fractures around the granite in an extensional setting. The precipitation of molybdenite-quartz veins at Shipingchuan was triggered by changes in temperatures and redox conditions, which were caused by mixing of magmatic fluids and meteoric water. Results in this study provide an example of tracing the link between Mo mineralization and magmatism using in situ S isotopic compositions of molybdenite and Pb isotopes of pyrite and K-feldspar.\",\"PeriodicalId\":242264,\"journal\":{\"name\":\"GSA Bulletin\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GSA Bulletin\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1130/b36600.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GSA Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1130/b36600.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

大多数钼矿床被认为与岩浆系统有关;然而,当使用以黄铁矿分离物为主的硫化物的体积硫(S)和铅(Pb)同位素时,它们的遗传联系并没有得到明确的解决。本文采用激光烧蚀-电感耦合等离子体质谱(LA-ICP-MS)和多集电极(MC) LA-ICP-MS测定了黄铁矿的显微结构和原位微量元素,辉钼矿和黄铁矿的原位S同位素组成,以及黄铁矿和钾长石的Pb同位素。结合岩浆活动和钼矿化的年代学资料,这些原位方法揭示了石坪川钼矿化与岩浆活动的成因联系。石坪川矿床的特征是在黑云母钾长石花岗岩周围以断裂或裂缝为寄存物的辉钼矿-石英脉。锆石LA-ICP-MS U-Pb和辉钼矿Re-Os测年结果证实,黑云母钾长石花岗岩与成矿形成于早白垩世末期(约105 Ma),而成矿后二长花岗岩斑岩岩脉形成于93.7 Ma。黄铁矿与辉钼矿关系密切,具有Co-Ni-As-Te-Cu-Pb-Ag-Bi−富芯(PyI)特征。岩心(PyI)和岩缘(PyII)的Co/Ni和计算的(Se/S)流体比表明岩浆-热液成因。辉钼矿原位S同位素组成(δ34S)为2.1‰~ 6.8‰,与辉钼矿分离物的S同位素组成基本一致。PyI的δ34S值为−6.9‰~ 0.8‰,PyII的δ34S值为−7.5‰~−0.2‰。这些分析结果表明辉钼矿S同位素原位分析结果可靠,比黄铁矿分析结果更适合约束热液中硫的来源。硫化物的原位S同位素组成证实了硫的岩浆来源。黄铁矿的原位Pb同位素组成与黑云母钾长石花岗岩的钾长石的原位Pb同位素组成一致,表明其来源相同。As/Ni、As/Sb和As/Bi的非均相值以及PyI和PyII的δ34S值的变化表明热液流体发生了递进氧化。这些结果表明,富金属流体是在伸展环境下从花岗岩中释放出来并沿花岗岩周围的断层和裂缝运移的。石坪川辉钼矿石英脉的沉淀是岩浆流体与大气水混合作用引起的温度和氧化还原条件变化所致。本研究结果为利用辉钼矿S同位素组成和黄铁矿和钾长石Pb同位素原位追踪钼矿化与岩浆作用之间的联系提供了一个实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Molybdenum mineralization genetically linked with magmatism at the Shipingchuan deposit, SE China
Most molybdenum (Mo) deposits are considered to be associated with magmatic systems; however, their genetic link is not clearly resolved when using, for example, bulk sulfur (S) and lead (Pb) isotopes of sulfides dominated by pyrite separates. Here, we present microtextures and in situ trace-element results of pyrite, in situ S isotopic compositions of molybdenite and pyrite, and Pb isotopes of pyrite and K-feldspar determined by laser ablation−inductively coupled plasma−mass spectrometry (LA-ICP-MS) and multicollector (MC) LA-ICP-MS. Combined with geochronologic data for both the magmatism and Mo mineralization, these in situ methods allowed the genetic link between Mo mineralization and magmatism to be unraveled at Shipingchuan, SE China. The Shipingchuan deposit is characterized by molybdenite-quartz veins hosted by faults or fractures around a biotite K-feldspar granite. Zircon LA-ICP-MS U-Pb and molybdenite Re-Os dating results confirm that the biotite K-feldspar granite and mineralization were coeval and formed during the end of the Early Cretaceous (ca. 105 Ma), whereas postmineralization monzogranite porphyry dikes formed at 93.7 Ma. Pyrite shows a close mutual relationship with molybdenite and is characterized by Co-Ni-As-Te-Cu-Pb-Ag-Bi−rich cores (PyI) revealed by LA-ICP-MS data. Co/Ni and calculated (Se/S)fluid ratios for both cores (PyI) and rims (PyII) indicate a magmatic-hydrothermal origin. The in situ S isotopic compositions (δ34S) of molybdenite are 2.1‰ to 6.8‰, which are identical to those of molybdenite separates. PyI has δ34S values of −6.9‰ to 0.8‰, whereas PyII exhibits slightly more negative values of −7.5‰ to −0.2‰. These analyses indicate reliable results for in situ S isotopes in molybdenite, which could be more appropriate to constrain the origin of sulfur in hydrothermal fluids than results from pyrite analysis. The in situ S isotopic compositions of sulfides confirm a magmatic source for sulfur. The in situ Pb isotopic compositions of pyrite are consistent with those of K-feldspar from the biotite K-feldspar granite, indicating a common source. The heterogeneous As/Ni, As/Sb, and As/Bi values, as well as the variations of δ34S values of both PyI and PyII, indicate progressive oxidization of the hydrothermal fluids. These results illustrate that the metal-rich fluids were released from the granite and migrated along faults and fractures around the granite in an extensional setting. The precipitation of molybdenite-quartz veins at Shipingchuan was triggered by changes in temperatures and redox conditions, which were caused by mixing of magmatic fluids and meteoric water. Results in this study provide an example of tracing the link between Mo mineralization and magmatism using in situ S isotopic compositions of molybdenite and Pb isotopes of pyrite and K-feldspar.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信