基于数据访问模式预测内存访问成本

S. Byna, Xian-He Sun, W. Gropp, R. Thakur
{"title":"基于数据访问模式预测内存访问成本","authors":"S. Byna, Xian-He Sun, W. Gropp, R. Thakur","doi":"10.1109/CLUSTR.2004.1392630","DOIUrl":null,"url":null,"abstract":"Improving memory performance at software level is more effective in reducing the rapidly expanding gap between processor and memory performance. Loop transformations (e.g. loop unrolling, loop tiling) and array restructuring optimizations improve the memory performance by increasing the locality of memory accesses. To find the best optimization parameters at runtime, we need a fast and simple analytical model to predict the memory access cost. Most of the existing models are complex and impractical to be integrated in the runtime tuning systems. In this paper, we propose a simple, fast and reasonably accurate model that is capable of predicting the memory access cost based on a wide range of data access patterns that appear in many scientific applications.","PeriodicalId":123512,"journal":{"name":"2004 IEEE International Conference on Cluster Computing (IEEE Cat. No.04EX935)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Predicting memory-access cost based on data-access patterns\",\"authors\":\"S. Byna, Xian-He Sun, W. Gropp, R. Thakur\",\"doi\":\"10.1109/CLUSTR.2004.1392630\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Improving memory performance at software level is more effective in reducing the rapidly expanding gap between processor and memory performance. Loop transformations (e.g. loop unrolling, loop tiling) and array restructuring optimizations improve the memory performance by increasing the locality of memory accesses. To find the best optimization parameters at runtime, we need a fast and simple analytical model to predict the memory access cost. Most of the existing models are complex and impractical to be integrated in the runtime tuning systems. In this paper, we propose a simple, fast and reasonably accurate model that is capable of predicting the memory access cost based on a wide range of data access patterns that appear in many scientific applications.\",\"PeriodicalId\":123512,\"journal\":{\"name\":\"2004 IEEE International Conference on Cluster Computing (IEEE Cat. No.04EX935)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2004 IEEE International Conference on Cluster Computing (IEEE Cat. No.04EX935)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CLUSTR.2004.1392630\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2004 IEEE International Conference on Cluster Computing (IEEE Cat. No.04EX935)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLUSTR.2004.1392630","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

在软件层面提高内存性能对于缩小处理器和内存性能之间迅速扩大的差距更为有效。循环转换(例如循环展开,循环平铺)和数组重构优化通过增加内存访问的局部性来提高内存性能。为了在运行时找到最佳的优化参数,我们需要一个快速、简单的分析模型来预测内存访问成本。现有的大多数模型都很复杂,难以集成到运行时调优系统中。在本文中,我们提出了一个简单、快速和合理准确的模型,该模型能够基于许多科学应用中出现的各种数据访问模式来预测内存访问成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting memory-access cost based on data-access patterns
Improving memory performance at software level is more effective in reducing the rapidly expanding gap between processor and memory performance. Loop transformations (e.g. loop unrolling, loop tiling) and array restructuring optimizations improve the memory performance by increasing the locality of memory accesses. To find the best optimization parameters at runtime, we need a fast and simple analytical model to predict the memory access cost. Most of the existing models are complex and impractical to be integrated in the runtime tuning systems. In this paper, we propose a simple, fast and reasonably accurate model that is capable of predicting the memory access cost based on a wide range of data access patterns that appear in many scientific applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信