{"title":"深度子空间聚类的多视图特征增强网络","authors":"Jinjoo Song, Gangjoon Yoon, Sangwon Baek, S. Yoon","doi":"10.1109/ICIP46576.2022.9897575","DOIUrl":null,"url":null,"abstract":"Subspace clustering is widely used to find clusters in different subspaces within a dataset. Autoencoders are popular deep subspace clustering methods using feature extraction and dimensional reduction. However, neural networks are vulnerable to overfitting, and therefore have limited potential for unsupervised subspace clustering. This paper proposes a deep multi-view subspace clustering network with feature boosting module to successfully extract meaningful features in different views and to fuse multi-view representations in a complementary manner for enhanced clustering results. The multi-view boosting provides the robust features for unsupervised clustering by emphasizing the features and removing the redundant noise. Quantitative and qualitative analysis on various benchmark datasets verifies that the proposed method outperforms state-of-the-art subspace clustering methods.","PeriodicalId":387035,"journal":{"name":"2022 IEEE International Conference on Image Processing (ICIP)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-View Feature Boosting Network for Deep Subspace Clustering\",\"authors\":\"Jinjoo Song, Gangjoon Yoon, Sangwon Baek, S. Yoon\",\"doi\":\"10.1109/ICIP46576.2022.9897575\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Subspace clustering is widely used to find clusters in different subspaces within a dataset. Autoencoders are popular deep subspace clustering methods using feature extraction and dimensional reduction. However, neural networks are vulnerable to overfitting, and therefore have limited potential for unsupervised subspace clustering. This paper proposes a deep multi-view subspace clustering network with feature boosting module to successfully extract meaningful features in different views and to fuse multi-view representations in a complementary manner for enhanced clustering results. The multi-view boosting provides the robust features for unsupervised clustering by emphasizing the features and removing the redundant noise. Quantitative and qualitative analysis on various benchmark datasets verifies that the proposed method outperforms state-of-the-art subspace clustering methods.\",\"PeriodicalId\":387035,\"journal\":{\"name\":\"2022 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP46576.2022.9897575\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP46576.2022.9897575","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multi-View Feature Boosting Network for Deep Subspace Clustering
Subspace clustering is widely used to find clusters in different subspaces within a dataset. Autoencoders are popular deep subspace clustering methods using feature extraction and dimensional reduction. However, neural networks are vulnerable to overfitting, and therefore have limited potential for unsupervised subspace clustering. This paper proposes a deep multi-view subspace clustering network with feature boosting module to successfully extract meaningful features in different views and to fuse multi-view representations in a complementary manner for enhanced clustering results. The multi-view boosting provides the robust features for unsupervised clustering by emphasizing the features and removing the redundant noise. Quantitative and qualitative analysis on various benchmark datasets verifies that the proposed method outperforms state-of-the-art subspace clustering methods.