深度子空间聚类的多视图特征增强网络

Jinjoo Song, Gangjoon Yoon, Sangwon Baek, S. Yoon
{"title":"深度子空间聚类的多视图特征增强网络","authors":"Jinjoo Song, Gangjoon Yoon, Sangwon Baek, S. Yoon","doi":"10.1109/ICIP46576.2022.9897575","DOIUrl":null,"url":null,"abstract":"Subspace clustering is widely used to find clusters in different subspaces within a dataset. Autoencoders are popular deep subspace clustering methods using feature extraction and dimensional reduction. However, neural networks are vulnerable to overfitting, and therefore have limited potential for unsupervised subspace clustering. This paper proposes a deep multi-view subspace clustering network with feature boosting module to successfully extract meaningful features in different views and to fuse multi-view representations in a complementary manner for enhanced clustering results. The multi-view boosting provides the robust features for unsupervised clustering by emphasizing the features and removing the redundant noise. Quantitative and qualitative analysis on various benchmark datasets verifies that the proposed method outperforms state-of-the-art subspace clustering methods.","PeriodicalId":387035,"journal":{"name":"2022 IEEE International Conference on Image Processing (ICIP)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-View Feature Boosting Network for Deep Subspace Clustering\",\"authors\":\"Jinjoo Song, Gangjoon Yoon, Sangwon Baek, S. Yoon\",\"doi\":\"10.1109/ICIP46576.2022.9897575\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Subspace clustering is widely used to find clusters in different subspaces within a dataset. Autoencoders are popular deep subspace clustering methods using feature extraction and dimensional reduction. However, neural networks are vulnerable to overfitting, and therefore have limited potential for unsupervised subspace clustering. This paper proposes a deep multi-view subspace clustering network with feature boosting module to successfully extract meaningful features in different views and to fuse multi-view representations in a complementary manner for enhanced clustering results. The multi-view boosting provides the robust features for unsupervised clustering by emphasizing the features and removing the redundant noise. Quantitative and qualitative analysis on various benchmark datasets verifies that the proposed method outperforms state-of-the-art subspace clustering methods.\",\"PeriodicalId\":387035,\"journal\":{\"name\":\"2022 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP46576.2022.9897575\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP46576.2022.9897575","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

子空间聚类被广泛用于在数据集中的不同子空间中寻找聚类。自编码器是一种常用的基于特征提取和降维的深度子空间聚类方法。然而,神经网络容易受到过拟合的影响,因此在无监督子空间聚类方面的潜力有限。本文提出了一种带特征提升模块的深度多视图子空间聚类网络,成功提取不同视图中有意义的特征,并以互补的方式融合多视图表示以增强聚类结果。多视图增强通过突出特征和去除冗余噪声为无监督聚类提供了鲁棒性特征。对各种基准数据集的定量和定性分析验证了该方法优于当前最先进的子空间聚类方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-View Feature Boosting Network for Deep Subspace Clustering
Subspace clustering is widely used to find clusters in different subspaces within a dataset. Autoencoders are popular deep subspace clustering methods using feature extraction and dimensional reduction. However, neural networks are vulnerable to overfitting, and therefore have limited potential for unsupervised subspace clustering. This paper proposes a deep multi-view subspace clustering network with feature boosting module to successfully extract meaningful features in different views and to fuse multi-view representations in a complementary manner for enhanced clustering results. The multi-view boosting provides the robust features for unsupervised clustering by emphasizing the features and removing the redundant noise. Quantitative and qualitative analysis on various benchmark datasets verifies that the proposed method outperforms state-of-the-art subspace clustering methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信