预测股市走势:一种进化的方法

S. Bouktif, M. Awad
{"title":"预测股市走势:一种进化的方法","authors":"S. Bouktif, M. Awad","doi":"10.5220/0005578401590167","DOIUrl":null,"url":null,"abstract":"Social Networks are becoming very popular sources of all kind of data. They allow a wide range of users to interact, socialize and express spontaneous opinions. The overwhelming amount of exchanged data on businesses, companies and governments make it possible to perform predictions and discover trends in many domains. In this paper we propose a new prediction model for the stock market movement problem based on collective classification. The model is using a number of public mood states as inputs to predict Up and Down movement of stock market. The proposed approach to build such a model is simultaneously promoting performance and interpretability. By interpretability, we mean the ability of a model to explain its predictions. A particular implementation of our approach is based on Ant Colony Optimization algorithm and customized for individual Bayesian classifiers. Our approach is validated with data collected from social media on the stock of a prestigious company. Promising results of our approach are compared with four alternative prediction methods namely, bagging, Adaboost, best expert, and expert trained on all the available data.","PeriodicalId":102743,"journal":{"name":"2015 7th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K)","volume":"2005 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Predicting stock market movement: An evolutionary approach\",\"authors\":\"S. Bouktif, M. Awad\",\"doi\":\"10.5220/0005578401590167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Social Networks are becoming very popular sources of all kind of data. They allow a wide range of users to interact, socialize and express spontaneous opinions. The overwhelming amount of exchanged data on businesses, companies and governments make it possible to perform predictions and discover trends in many domains. In this paper we propose a new prediction model for the stock market movement problem based on collective classification. The model is using a number of public mood states as inputs to predict Up and Down movement of stock market. The proposed approach to build such a model is simultaneously promoting performance and interpretability. By interpretability, we mean the ability of a model to explain its predictions. A particular implementation of our approach is based on Ant Colony Optimization algorithm and customized for individual Bayesian classifiers. Our approach is validated with data collected from social media on the stock of a prestigious company. Promising results of our approach are compared with four alternative prediction methods namely, bagging, Adaboost, best expert, and expert trained on all the available data.\",\"PeriodicalId\":102743,\"journal\":{\"name\":\"2015 7th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K)\",\"volume\":\"2005 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 7th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5220/0005578401590167\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 7th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0005578401590167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

社交网络正在成为各种数据的流行来源。它们允许广泛的用户进行互动、社交和表达自发的意见。大量关于企业、公司和政府的交换数据使得在许多领域进行预测和发现趋势成为可能。本文提出了一种新的基于集体分类的股票市场运动预测模型。该模型是使用一些公众情绪状态作为输入来预测股票市场的上下运动。构建这种模型的建议方法同时提高了性能和可解释性。通过可解释性,我们指的是模型解释其预测的能力。我们的方法的具体实现是基于蚁群优化算法,并为单个贝叶斯分类器定制。我们的方法通过从社交媒体上收集的一家知名公司的股票数据得到了验证。将我们的方法与bagging、Adaboost、best expert和对所有可用数据进行训练的专家四种替代预测方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting stock market movement: An evolutionary approach
Social Networks are becoming very popular sources of all kind of data. They allow a wide range of users to interact, socialize and express spontaneous opinions. The overwhelming amount of exchanged data on businesses, companies and governments make it possible to perform predictions and discover trends in many domains. In this paper we propose a new prediction model for the stock market movement problem based on collective classification. The model is using a number of public mood states as inputs to predict Up and Down movement of stock market. The proposed approach to build such a model is simultaneously promoting performance and interpretability. By interpretability, we mean the ability of a model to explain its predictions. A particular implementation of our approach is based on Ant Colony Optimization algorithm and customized for individual Bayesian classifiers. Our approach is validated with data collected from social media on the stock of a prestigious company. Promising results of our approach are compared with four alternative prediction methods namely, bagging, Adaboost, best expert, and expert trained on all the available data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信