{"title":"面向具有保密性的物联网医疗平台的工作负载平衡、实时深度学习分析","authors":"Jose Granados, Haoming Chu, Z. Zou, Lirong Zheng","doi":"10.1109/AICAS.2019.8771558","DOIUrl":null,"url":null,"abstract":"Internet of Things (IoT) applications for healthcare are one of the most studied aspects in the research landscape due to the promise of more efficient resource allocation for hospitals and as a companion tool for health professionals. Yet, the requirements in terms of low power, latency and knowledge extraction from the large amount of physiological data generated represent a challenge to be addressed by the research community. In this work, we examine the balance between power consumption, performance and latency among edge, gateway, fog and cloud layers in an IoT medical platform featuring inference by Deep Learning models. We setup an IoT architecture to acquire and classify multichannel electrocardiogram (ECG) signals into normal or abnormal states which could represent a clinically relevant condition by combining custom embedded devices with contemporary open source machine learning packages such as TensorFlow. Different hardware platforms are tested in order to find the best compromise in terms of convenience, latency, power consumption and performance. Our experiments indicate that the real time requisites are fulfilled, however there is a need to reduce energy expenditure by means of incorporating low power SoCs with integrated neuromorphic blocks.","PeriodicalId":273095,"journal":{"name":"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Towards Workload-Balanced, Live Deep Learning Analytics for Confidentiality-Aware IoT Medical Platforms\",\"authors\":\"Jose Granados, Haoming Chu, Z. Zou, Lirong Zheng\",\"doi\":\"10.1109/AICAS.2019.8771558\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Internet of Things (IoT) applications for healthcare are one of the most studied aspects in the research landscape due to the promise of more efficient resource allocation for hospitals and as a companion tool for health professionals. Yet, the requirements in terms of low power, latency and knowledge extraction from the large amount of physiological data generated represent a challenge to be addressed by the research community. In this work, we examine the balance between power consumption, performance and latency among edge, gateway, fog and cloud layers in an IoT medical platform featuring inference by Deep Learning models. We setup an IoT architecture to acquire and classify multichannel electrocardiogram (ECG) signals into normal or abnormal states which could represent a clinically relevant condition by combining custom embedded devices with contemporary open source machine learning packages such as TensorFlow. Different hardware platforms are tested in order to find the best compromise in terms of convenience, latency, power consumption and performance. Our experiments indicate that the real time requisites are fulfilled, however there is a need to reduce energy expenditure by means of incorporating low power SoCs with integrated neuromorphic blocks.\",\"PeriodicalId\":273095,\"journal\":{\"name\":\"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AICAS.2019.8771558\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICAS.2019.8771558","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Towards Workload-Balanced, Live Deep Learning Analytics for Confidentiality-Aware IoT Medical Platforms
Internet of Things (IoT) applications for healthcare are one of the most studied aspects in the research landscape due to the promise of more efficient resource allocation for hospitals and as a companion tool for health professionals. Yet, the requirements in terms of low power, latency and knowledge extraction from the large amount of physiological data generated represent a challenge to be addressed by the research community. In this work, we examine the balance between power consumption, performance and latency among edge, gateway, fog and cloud layers in an IoT medical platform featuring inference by Deep Learning models. We setup an IoT architecture to acquire and classify multichannel electrocardiogram (ECG) signals into normal or abnormal states which could represent a clinically relevant condition by combining custom embedded devices with contemporary open source machine learning packages such as TensorFlow. Different hardware platforms are tested in order to find the best compromise in terms of convenience, latency, power consumption and performance. Our experiments indicate that the real time requisites are fulfilled, however there is a need to reduce energy expenditure by means of incorporating low power SoCs with integrated neuromorphic blocks.