关于布尔函数的学习

B. Natarajan
{"title":"关于布尔函数的学习","authors":"B. Natarajan","doi":"10.1145/28395.28427","DOIUrl":null,"url":null,"abstract":"This paper deals with the learnability of Boolean functions. An intuitively appealing notion of dimensionality is developed and used to identify the most general class of Boolean function families that are learnable from polynomially many positive examples with one-sided error. It is then argued that although bounded DNF expressions lie outside this class, they must have efficient learning algorithms as they are well suited for expressing many human concepts. A framework that permits efficient learning of bounded DNF functions is identified.","PeriodicalId":161795,"journal":{"name":"Proceedings of the nineteenth annual ACM symposium on Theory of computing","volume":"26 11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1987-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"146","resultStr":"{\"title\":\"On learning Boolean functions\",\"authors\":\"B. Natarajan\",\"doi\":\"10.1145/28395.28427\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with the learnability of Boolean functions. An intuitively appealing notion of dimensionality is developed and used to identify the most general class of Boolean function families that are learnable from polynomially many positive examples with one-sided error. It is then argued that although bounded DNF expressions lie outside this class, they must have efficient learning algorithms as they are well suited for expressing many human concepts. A framework that permits efficient learning of bounded DNF functions is identified.\",\"PeriodicalId\":161795,\"journal\":{\"name\":\"Proceedings of the nineteenth annual ACM symposium on Theory of computing\",\"volume\":\"26 11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1987-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"146\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the nineteenth annual ACM symposium on Theory of computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/28395.28427\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the nineteenth annual ACM symposium on Theory of computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/28395.28427","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 146

摘要

本文研究布尔函数的可学习性问题。一个直观吸引人的维数概念被开发出来,并用于识别最一般的布尔函数族,这些布尔函数族可以从许多具有片面误差的多项式正例中学习。然后有人认为,尽管有界DNF表达式在这类之外,但它们必须具有有效的学习算法,因为它们非常适合表达许多人类概念。确定了一个允许有效学习有界DNF函数的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On learning Boolean functions
This paper deals with the learnability of Boolean functions. An intuitively appealing notion of dimensionality is developed and used to identify the most general class of Boolean function families that are learnable from polynomially many positive examples with one-sided error. It is then argued that although bounded DNF expressions lie outside this class, they must have efficient learning algorithms as they are well suited for expressing many human concepts. A framework that permits efficient learning of bounded DNF functions is identified.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信