星形槽分式永磁电机的空间谐波建模

G. Ugalde, J. Poza, M. Rodriguez, Antonio González
{"title":"星形槽分式永磁电机的空间谐波建模","authors":"G. Ugalde, J. Poza, M. Rodriguez, Antonio González","doi":"10.1109/ICELMACH.2008.4799937","DOIUrl":null,"url":null,"abstract":"This work deals with the calculus of expressions for the complex winding factor from the star of slots directly obtained from the type of the fractional winding. Complex winding factor expressions have been obtained for Q slots and p pole pair combination and have been included in an analytical model based on spatial Fourier series. The model is achieved for a slotless stator and surface mounted permanent magnet rotor. The accuracy of the model is evaluated with FEM simulations for both slotted and slotless stator.","PeriodicalId":416125,"journal":{"name":"2008 18th International Conference on Electrical Machines","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Space harmonic modeling of fractional permanent magnet machines from star of slots\",\"authors\":\"G. Ugalde, J. Poza, M. Rodriguez, Antonio González\",\"doi\":\"10.1109/ICELMACH.2008.4799937\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work deals with the calculus of expressions for the complex winding factor from the star of slots directly obtained from the type of the fractional winding. Complex winding factor expressions have been obtained for Q slots and p pole pair combination and have been included in an analytical model based on spatial Fourier series. The model is achieved for a slotless stator and surface mounted permanent magnet rotor. The accuracy of the model is evaluated with FEM simulations for both slotted and slotless stator.\",\"PeriodicalId\":416125,\"journal\":{\"name\":\"2008 18th International Conference on Electrical Machines\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 18th International Conference on Electrical Machines\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICELMACH.2008.4799937\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 18th International Conference on Electrical Machines","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICELMACH.2008.4799937","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文研究了直接从分数绕组类型中得到的槽星形复绕组因子表达式的演算。得到了Q槽和p极对组合的复杂缠绕因子表达式,并将其包含在基于空间傅里叶级数的解析模型中。建立了无槽定子和表面贴装永磁转子的模型。通过对有槽定子和无槽定子的有限元仿真,对模型的精度进行了评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Space harmonic modeling of fractional permanent magnet machines from star of slots
This work deals with the calculus of expressions for the complex winding factor from the star of slots directly obtained from the type of the fractional winding. Complex winding factor expressions have been obtained for Q slots and p pole pair combination and have been included in an analytical model based on spatial Fourier series. The model is achieved for a slotless stator and surface mounted permanent magnet rotor. The accuracy of the model is evaluated with FEM simulations for both slotted and slotless stator.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信