公平感知机器学习:实践挑战和经验教训

Sarah Bird, K. Kenthapadi, Emre Kıcıman, Margaret Mitchell
{"title":"公平感知机器学习:实践挑战和经验教训","authors":"Sarah Bird, K. Kenthapadi, Emre Kıcıman, Margaret Mitchell","doi":"10.1145/3289600.3291383","DOIUrl":null,"url":null,"abstract":"Researchers and practitioners from different disciplines have highlighted the ethical and legal challenges posed by the use of machine learned models and data-driven systems, and the potential for such systems to discriminate against certain population groups, due to biases in algorithmic decision-making systems. This tutorial aims to present an overview of algorithmic bias / discrimination issues observed over the last few years and the lessons learned, key regulations and laws, and evolution of techniques for achieving fairness in machine learning systems. We will motivate the need for adopting a \"fairness-first\" approach (as opposed to viewing algorithmic bias / fairness considerations as an afterthought), when developing machine learning based models and systems for different consumer and enterprise applications. Then, we will focus on the application of fairness-aware machine learning techniques in practice, by presenting case studies from different technology companies. Based on our experiences in industry, we will identify open problems and research challenges for the data mining / machine learning community.","PeriodicalId":143253,"journal":{"name":"Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"51","resultStr":"{\"title\":\"Fairness-Aware Machine Learning: Practical Challenges and Lessons Learned\",\"authors\":\"Sarah Bird, K. Kenthapadi, Emre Kıcıman, Margaret Mitchell\",\"doi\":\"10.1145/3289600.3291383\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Researchers and practitioners from different disciplines have highlighted the ethical and legal challenges posed by the use of machine learned models and data-driven systems, and the potential for such systems to discriminate against certain population groups, due to biases in algorithmic decision-making systems. This tutorial aims to present an overview of algorithmic bias / discrimination issues observed over the last few years and the lessons learned, key regulations and laws, and evolution of techniques for achieving fairness in machine learning systems. We will motivate the need for adopting a \\\"fairness-first\\\" approach (as opposed to viewing algorithmic bias / fairness considerations as an afterthought), when developing machine learning based models and systems for different consumer and enterprise applications. Then, we will focus on the application of fairness-aware machine learning techniques in practice, by presenting case studies from different technology companies. Based on our experiences in industry, we will identify open problems and research challenges for the data mining / machine learning community.\",\"PeriodicalId\":143253,\"journal\":{\"name\":\"Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"51\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3289600.3291383\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3289600.3291383","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 51

摘要

来自不同学科的研究人员和从业人员强调了使用机器学习模型和数据驱动系统所带来的伦理和法律挑战,以及由于算法决策系统中的偏见,这些系统可能会歧视某些人群。本教程旨在概述过去几年观察到的算法偏见/歧视问题,吸取的教训,关键法规和法律,以及在机器学习系统中实现公平的技术演变。在为不同的消费者和企业应用程序开发基于机器学习的模型和系统时,我们将激发采用“公平优先”方法的需求(而不是将算法偏见/公平考虑视为事后考虑)。然后,我们将通过介绍来自不同技术公司的案例研究,专注于公平感知机器学习技术在实践中的应用。基于我们的行业经验,我们将为数据挖掘/机器学习社区确定开放的问题和研究挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fairness-Aware Machine Learning: Practical Challenges and Lessons Learned
Researchers and practitioners from different disciplines have highlighted the ethical and legal challenges posed by the use of machine learned models and data-driven systems, and the potential for such systems to discriminate against certain population groups, due to biases in algorithmic decision-making systems. This tutorial aims to present an overview of algorithmic bias / discrimination issues observed over the last few years and the lessons learned, key regulations and laws, and evolution of techniques for achieving fairness in machine learning systems. We will motivate the need for adopting a "fairness-first" approach (as opposed to viewing algorithmic bias / fairness considerations as an afterthought), when developing machine learning based models and systems for different consumer and enterprise applications. Then, we will focus on the application of fairness-aware machine learning techniques in practice, by presenting case studies from different technology companies. Based on our experiences in industry, we will identify open problems and research challenges for the data mining / machine learning community.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信