模型插值能力差异的研究

I. Juutilainen, J. Roning, P. Laurinen
{"title":"模型插值能力差异的研究","authors":"I. Juutilainen, J. Roning, P. Laurinen","doi":"10.1109/SMCIA.2005.1466973","DOIUrl":null,"url":null,"abstract":"We examined the interpolation capabilities of learning methods using simulated data sets and a real data set. We compared five common learning methods for their generalisation capability on the boundaries of the training data set also; we examined the effects of the complexity of models on interpolation capability. Our main results were that there are differences between the different model families, but model complexity does not have a major effect on interpolation capability. The multi-layer perceptron, support vector regression and additive spline models outperformed local linear regression and quadratic regression in interpolation capabilities. Information about the interpolation capability of models is useful when, for example, evaluating the reliability of prediction.","PeriodicalId":283950,"journal":{"name":"Proceedings of the 2005 IEEE Midnight-Summer Workshop on Soft Computing in Industrial Applications, 2005. SMCia/05.","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A study on the differences in the interpolation capabilities of models\",\"authors\":\"I. Juutilainen, J. Roning, P. Laurinen\",\"doi\":\"10.1109/SMCIA.2005.1466973\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We examined the interpolation capabilities of learning methods using simulated data sets and a real data set. We compared five common learning methods for their generalisation capability on the boundaries of the training data set also; we examined the effects of the complexity of models on interpolation capability. Our main results were that there are differences between the different model families, but model complexity does not have a major effect on interpolation capability. The multi-layer perceptron, support vector regression and additive spline models outperformed local linear regression and quadratic regression in interpolation capabilities. Information about the interpolation capability of models is useful when, for example, evaluating the reliability of prediction.\",\"PeriodicalId\":283950,\"journal\":{\"name\":\"Proceedings of the 2005 IEEE Midnight-Summer Workshop on Soft Computing in Industrial Applications, 2005. SMCia/05.\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2005 IEEE Midnight-Summer Workshop on Soft Computing in Industrial Applications, 2005. SMCia/05.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SMCIA.2005.1466973\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2005 IEEE Midnight-Summer Workshop on Soft Computing in Industrial Applications, 2005. SMCia/05.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMCIA.2005.1466973","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们使用模拟数据集和真实数据集检查了学习方法的插值能力。我们还比较了五种常用的学习方法在训练数据集边界上的泛化能力;我们考察了模型复杂性对插值能力的影响。我们的主要结果是不同模型族之间存在差异,但模型复杂性对插值能力没有主要影响。多层感知器、支持向量回归和加性样条模型在插值能力上优于局部线性回归和二次回归。例如,在评估预测的可靠性时,关于模型的插值能力的信息是有用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A study on the differences in the interpolation capabilities of models
We examined the interpolation capabilities of learning methods using simulated data sets and a real data set. We compared five common learning methods for their generalisation capability on the boundaries of the training data set also; we examined the effects of the complexity of models on interpolation capability. Our main results were that there are differences between the different model families, but model complexity does not have a major effect on interpolation capability. The multi-layer perceptron, support vector regression and additive spline models outperformed local linear regression and quadratic regression in interpolation capabilities. Information about the interpolation capability of models is useful when, for example, evaluating the reliability of prediction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信