{"title":"gfrp -钢筋混凝土的受拉加劲性能","authors":"H. Sooriyaarachchi, K. Pilakoutas, E. Byars","doi":"10.14359/14876","DOIUrl":null,"url":null,"abstract":"Synopsis: This paper presents an experimental study into the structural response of Glass Fiber Reinforced Polymers Reinforced Concrete (GFRP-RC) tension members. The influence of concrete strength, reinforcement ratio and bar diameter on tension stiffening is investigated by testing elements in direct tension. Using bars specially manufactured with internal strain gauges, typical strain patterns occurring between cracks during direct tension tests were measured and bond stresses derived, thereby obtaining the information for modeling tension stiffening behavior of GFRP-RC. An increase in the tension stiffening behavior with decrease in reinforcement ratio and increase in concrete strength was observed. No appreciable change in tension stiffening was recorded with changes in bar diameter at constant reinforcement ratio. This paper also discusses the limitations that may be encountered in modifying current models to represent the tension stiffening effect of GFRP-RC.","PeriodicalId":151616,"journal":{"name":"SP-230: 7th International Symposium on Fiber-Reinforced (FRP) Polymer Reinforcement for Concrete Structures","volume":"153 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Tension Stiffening Behavior of GFRP-Reinforced Concrete\",\"authors\":\"H. Sooriyaarachchi, K. Pilakoutas, E. Byars\",\"doi\":\"10.14359/14876\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Synopsis: This paper presents an experimental study into the structural response of Glass Fiber Reinforced Polymers Reinforced Concrete (GFRP-RC) tension members. The influence of concrete strength, reinforcement ratio and bar diameter on tension stiffening is investigated by testing elements in direct tension. Using bars specially manufactured with internal strain gauges, typical strain patterns occurring between cracks during direct tension tests were measured and bond stresses derived, thereby obtaining the information for modeling tension stiffening behavior of GFRP-RC. An increase in the tension stiffening behavior with decrease in reinforcement ratio and increase in concrete strength was observed. No appreciable change in tension stiffening was recorded with changes in bar diameter at constant reinforcement ratio. This paper also discusses the limitations that may be encountered in modifying current models to represent the tension stiffening effect of GFRP-RC.\",\"PeriodicalId\":151616,\"journal\":{\"name\":\"SP-230: 7th International Symposium on Fiber-Reinforced (FRP) Polymer Reinforcement for Concrete Structures\",\"volume\":\"153 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SP-230: 7th International Symposium on Fiber-Reinforced (FRP) Polymer Reinforcement for Concrete Structures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14359/14876\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SP-230: 7th International Symposium on Fiber-Reinforced (FRP) Polymer Reinforcement for Concrete Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14359/14876","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Tension Stiffening Behavior of GFRP-Reinforced Concrete
Synopsis: This paper presents an experimental study into the structural response of Glass Fiber Reinforced Polymers Reinforced Concrete (GFRP-RC) tension members. The influence of concrete strength, reinforcement ratio and bar diameter on tension stiffening is investigated by testing elements in direct tension. Using bars specially manufactured with internal strain gauges, typical strain patterns occurring between cracks during direct tension tests were measured and bond stresses derived, thereby obtaining the information for modeling tension stiffening behavior of GFRP-RC. An increase in the tension stiffening behavior with decrease in reinforcement ratio and increase in concrete strength was observed. No appreciable change in tension stiffening was recorded with changes in bar diameter at constant reinforcement ratio. This paper also discusses the limitations that may be encountered in modifying current models to represent the tension stiffening effect of GFRP-RC.