具有扰动的非线性多智能体系统的有限时间脉冲一致性

Zunbin Li
{"title":"具有扰动的非线性多智能体系统的有限时间脉冲一致性","authors":"Zunbin Li","doi":"10.1109/ICACI.2017.7974492","DOIUrl":null,"url":null,"abstract":"This paper investigates FTC (finite-time consensus) problem of nonlinear MAC (multi-agent system) with disturbance via impulsive control protocol, where the states of agents can be updated by the state of itself and the state of its neighbor at certain discrete time constants. Some sufficient conditions are established via the impulsive control theory and the algebraic graph theory. What's more, the setting time for consensus is formulated by eigenvalues of Laplacian matrix, control gain and impulse interval. Numerical simulations demonstrate the availability of the theoretical results.","PeriodicalId":260701,"journal":{"name":"2017 Ninth International Conference on Advanced Computational Intelligence (ICACI)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Finite-time impulsive consensus of nonlinear multi-agent system with disturbance\",\"authors\":\"Zunbin Li\",\"doi\":\"10.1109/ICACI.2017.7974492\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates FTC (finite-time consensus) problem of nonlinear MAC (multi-agent system) with disturbance via impulsive control protocol, where the states of agents can be updated by the state of itself and the state of its neighbor at certain discrete time constants. Some sufficient conditions are established via the impulsive control theory and the algebraic graph theory. What's more, the setting time for consensus is formulated by eigenvalues of Laplacian matrix, control gain and impulse interval. Numerical simulations demonstrate the availability of the theoretical results.\",\"PeriodicalId\":260701,\"journal\":{\"name\":\"2017 Ninth International Conference on Advanced Computational Intelligence (ICACI)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Ninth International Conference on Advanced Computational Intelligence (ICACI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICACI.2017.7974492\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Ninth International Conference on Advanced Computational Intelligence (ICACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACI.2017.7974492","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

利用脉冲控制协议研究了具有扰动的非线性多智能体系统的有限时间一致性问题,其中智能体的状态可以通过自身和相邻智能体在一定离散时间常数下的状态来更新。利用脉冲控制理论和代数图理论,建立了若干充分条件。共识的设定时间由拉普拉斯矩阵的特征值、控制增益和脉冲间隔表示。数值模拟验证了理论结果的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finite-time impulsive consensus of nonlinear multi-agent system with disturbance
This paper investigates FTC (finite-time consensus) problem of nonlinear MAC (multi-agent system) with disturbance via impulsive control protocol, where the states of agents can be updated by the state of itself and the state of its neighbor at certain discrete time constants. Some sufficient conditions are established via the impulsive control theory and the algebraic graph theory. What's more, the setting time for consensus is formulated by eigenvalues of Laplacian matrix, control gain and impulse interval. Numerical simulations demonstrate the availability of the theoretical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信