基于人工神经网络的产品安全库存预测方法

Ping Zhao, Jingjing Liu
{"title":"基于人工神经网络的产品安全库存预测方法","authors":"Ping Zhao, Jingjing Liu","doi":"10.1109/ISME.2010.190","DOIUrl":null,"url":null,"abstract":"When selling products, in order to prevent products stockout due to the uncertainty events, enterprises usually reserves a certain amount of safety stock. The amount of safety stock is directly related to inventory costs. How to calculate the amount of safety stock, the traditional method of using formulas to calculate directly has many limitations. This paper used artificial neural network to predict the amount of safety stock. The experimental result shows high accuracy.","PeriodicalId":348878,"journal":{"name":"2010 International Conference of Information Science and Management Engineering","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"The Product Safety Stock Prediction Method Based on Artificial Neural Network\",\"authors\":\"Ping Zhao, Jingjing Liu\",\"doi\":\"10.1109/ISME.2010.190\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When selling products, in order to prevent products stockout due to the uncertainty events, enterprises usually reserves a certain amount of safety stock. The amount of safety stock is directly related to inventory costs. How to calculate the amount of safety stock, the traditional method of using formulas to calculate directly has many limitations. This paper used artificial neural network to predict the amount of safety stock. The experimental result shows high accuracy.\",\"PeriodicalId\":348878,\"journal\":{\"name\":\"2010 International Conference of Information Science and Management Engineering\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference of Information Science and Management Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISME.2010.190\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference of Information Science and Management Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISME.2010.190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

在销售产品时,为了防止不确定性事件导致产品缺货,企业通常会储备一定数量的安全库存。安全库存的数量与库存成本直接相关。如何计算安全库存量,传统的直接用公式计算的方法有很多局限性。本文采用人工神经网络对安全库存量进行预测。实验结果表明,该方法具有较高的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Product Safety Stock Prediction Method Based on Artificial Neural Network
When selling products, in order to prevent products stockout due to the uncertainty events, enterprises usually reserves a certain amount of safety stock. The amount of safety stock is directly related to inventory costs. How to calculate the amount of safety stock, the traditional method of using formulas to calculate directly has many limitations. This paper used artificial neural network to predict the amount of safety stock. The experimental result shows high accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信