输电系统停电模型的动力学、临界性和自组织

B. Carreras, V. Lynch, I. Dobson, D. Newman
{"title":"输电系统停电模型的动力学、临界性和自组织","authors":"B. Carreras, V. Lynch, I. Dobson, D. Newman","doi":"10.1109/HICSS.2002.993976","DOIUrl":null,"url":null,"abstract":"A model has been developed to study the global complex dynamics of a series of blackouts in power transmission systems. This model included a simple level of self-organization by incorporating the growth of power demand and the engineering response to system failures. Two types of blackouts have been identified with different dynamical properties. One type of blackout involves loss of load due to lines reaching their load limits but no line outages. The second type of blackout is associated with multiple line outages. The dominance of one type of blackouts versus the other depends on operational conditions and the proximity of the system to one of its two critical points. The first critical point is characterized by operation with lines close to their line limits. The second critical point is characterized by the maximum in the fluctuations of the load demand being near the generator margin capability. The identification of this second critical point is an indication that the increase of the generator capability as a response to the increase of the load demand must be included in the dynamical model to achieve a higher degree of self-organization. When this is done, the model shows a probability distribution of blackout sizes with power tails similar to that observed in real blackout data,from North America.","PeriodicalId":366006,"journal":{"name":"Proceedings of the 35th Annual Hawaii International Conference on System Sciences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"74","resultStr":"{\"title\":\"Dynamics, criticality and self-organization in a model for blackouts in power transmission systems\",\"authors\":\"B. Carreras, V. Lynch, I. Dobson, D. Newman\",\"doi\":\"10.1109/HICSS.2002.993976\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A model has been developed to study the global complex dynamics of a series of blackouts in power transmission systems. This model included a simple level of self-organization by incorporating the growth of power demand and the engineering response to system failures. Two types of blackouts have been identified with different dynamical properties. One type of blackout involves loss of load due to lines reaching their load limits but no line outages. The second type of blackout is associated with multiple line outages. The dominance of one type of blackouts versus the other depends on operational conditions and the proximity of the system to one of its two critical points. The first critical point is characterized by operation with lines close to their line limits. The second critical point is characterized by the maximum in the fluctuations of the load demand being near the generator margin capability. The identification of this second critical point is an indication that the increase of the generator capability as a response to the increase of the load demand must be included in the dynamical model to achieve a higher degree of self-organization. When this is done, the model shows a probability distribution of blackout sizes with power tails similar to that observed in real blackout data,from North America.\",\"PeriodicalId\":366006,\"journal\":{\"name\":\"Proceedings of the 35th Annual Hawaii International Conference on System Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"74\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 35th Annual Hawaii International Conference on System Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HICSS.2002.993976\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 35th Annual Hawaii International Conference on System Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HICSS.2002.993976","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 74

摘要

建立了输电系统一系列停电的全局复杂动力学模型。该模型通过结合电力需求的增长和系统故障的工程响应,包括一个简单的自组织水平。已经确定了两种类型的停电具有不同的动态特性。一种类型的停电涉及由于线路达到其负载限制而导致的负载损失,但没有线路中断。第二种类型的停电与多线路中断有关。一种类型的停电相对于另一种类型的优势取决于运行条件和系统接近其两个临界点之一。第一个临界点的特点是线的操作接近其线的极限。第二个临界点的特点是负荷需求波动的最大值接近发电机的裕度能力。第二个临界点的确定表明,发电机能力的增加作为对负荷需求增加的响应必须包含在动态模型中,以实现更高程度的自组织。当这样做时,该模型显示了停电规模的概率分布,其功率尾部与在北美实际停电数据中观察到的相似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamics, criticality and self-organization in a model for blackouts in power transmission systems
A model has been developed to study the global complex dynamics of a series of blackouts in power transmission systems. This model included a simple level of self-organization by incorporating the growth of power demand and the engineering response to system failures. Two types of blackouts have been identified with different dynamical properties. One type of blackout involves loss of load due to lines reaching their load limits but no line outages. The second type of blackout is associated with multiple line outages. The dominance of one type of blackouts versus the other depends on operational conditions and the proximity of the system to one of its two critical points. The first critical point is characterized by operation with lines close to their line limits. The second critical point is characterized by the maximum in the fluctuations of the load demand being near the generator margin capability. The identification of this second critical point is an indication that the increase of the generator capability as a response to the increase of the load demand must be included in the dynamical model to achieve a higher degree of self-organization. When this is done, the model shows a probability distribution of blackout sizes with power tails similar to that observed in real blackout data,from North America.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信