{"title":"徒手构造3-流形","authors":"R. Benedetti, P. Lisca","doi":"10.4171/LEM/64-3/4-9","DOIUrl":null,"url":null,"abstract":"After surveying existing proofs that every closed, orientable 3-manifold is parallelizable, we give three proofs using minimal background. In particular, our proofs use neither spin structures nor the theory of Stiefel-Whitney classes.","PeriodicalId":344085,"journal":{"name":"L’Enseignement Mathématique","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Framing 3-manifolds with bare hands\",\"authors\":\"R. Benedetti, P. Lisca\",\"doi\":\"10.4171/LEM/64-3/4-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"After surveying existing proofs that every closed, orientable 3-manifold is parallelizable, we give three proofs using minimal background. In particular, our proofs use neither spin structures nor the theory of Stiefel-Whitney classes.\",\"PeriodicalId\":344085,\"journal\":{\"name\":\"L’Enseignement Mathématique\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"L’Enseignement Mathématique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/LEM/64-3/4-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"L’Enseignement Mathématique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/LEM/64-3/4-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
After surveying existing proofs that every closed, orientable 3-manifold is parallelizable, we give three proofs using minimal background. In particular, our proofs use neither spin structures nor the theory of Stiefel-Whitney classes.