文本中近似模式匹配的高效索引算法

M. Petri, M. Petri, J. Culpepper
{"title":"文本中近似模式匹配的高效索引算法","authors":"M. Petri, M. Petri, J. Culpepper","doi":"10.1145/2407085.2407087","DOIUrl":null,"url":null,"abstract":"Approximate pattern matching is an important computational problem with a wide variety of applications in Information Retrieval. Efficient solutions to approximate pattern matching can be applied to natural language keyword queries with spelling mistakes, OCR scanned text incorporated into indexes, language model ranking algorithms based on term proximity, or DNA databases containing sequencing errors. In this paper, we present a novel approach to constructing text indexes capable of efficiently supporting approximate search queries. Our approach relies on a new variant of the Context Bound Burrows-Wheeler Transform (k-bwt), referred to as the Variable Depth Burrows-Wheeler Transform (v-bwt). First, we describe our new algorithm, and show that it is reversible. Next, we show how to use the transform to support efficient text indexing and approximate pattern matching. Lastly, we empirically evaluate the use of the v-bwt for DNA and English text collections, and show a significant improvement in approximate search efficiency over more traditional q-gram based approximate pattern matching algorithms.","PeriodicalId":402985,"journal":{"name":"Australasian Document Computing Symposium","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Efficient indexing algorithms for approximate pattern matching in text\",\"authors\":\"M. Petri, M. Petri, J. Culpepper\",\"doi\":\"10.1145/2407085.2407087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Approximate pattern matching is an important computational problem with a wide variety of applications in Information Retrieval. Efficient solutions to approximate pattern matching can be applied to natural language keyword queries with spelling mistakes, OCR scanned text incorporated into indexes, language model ranking algorithms based on term proximity, or DNA databases containing sequencing errors. In this paper, we present a novel approach to constructing text indexes capable of efficiently supporting approximate search queries. Our approach relies on a new variant of the Context Bound Burrows-Wheeler Transform (k-bwt), referred to as the Variable Depth Burrows-Wheeler Transform (v-bwt). First, we describe our new algorithm, and show that it is reversible. Next, we show how to use the transform to support efficient text indexing and approximate pattern matching. Lastly, we empirically evaluate the use of the v-bwt for DNA and English text collections, and show a significant improvement in approximate search efficiency over more traditional q-gram based approximate pattern matching algorithms.\",\"PeriodicalId\":402985,\"journal\":{\"name\":\"Australasian Document Computing Symposium\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Australasian Document Computing Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2407085.2407087\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australasian Document Computing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2407085.2407087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

近似模式匹配是一个重要的计算问题,在信息检索中有着广泛的应用。近似模式匹配的有效解决方案可以应用于包含拼写错误的自然语言关键字查询、包含索引的OCR扫描文本、基于术语接近度的语言模型排序算法或包含测序错误的DNA数据库。在本文中,我们提出了一种新的方法来构建能够有效支持近似搜索查询的文本索引。我们的方法依赖于上下文绑定Burrows-Wheeler变换(k-bwt)的一种新变体,称为变深度Burrows-Wheeler变换(v-bwt)。首先,我们描述了我们的新算法,并证明了它是可逆的。接下来,我们将展示如何使用转换来支持有效的文本索引和近似模式匹配。最后,我们对v-bwt在DNA和英语文本集合中的使用进行了实证评估,结果表明,与传统的基于q-gram的近似模式匹配算法相比,v-bwt在近似搜索效率方面有显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient indexing algorithms for approximate pattern matching in text
Approximate pattern matching is an important computational problem with a wide variety of applications in Information Retrieval. Efficient solutions to approximate pattern matching can be applied to natural language keyword queries with spelling mistakes, OCR scanned text incorporated into indexes, language model ranking algorithms based on term proximity, or DNA databases containing sequencing errors. In this paper, we present a novel approach to constructing text indexes capable of efficiently supporting approximate search queries. Our approach relies on a new variant of the Context Bound Burrows-Wheeler Transform (k-bwt), referred to as the Variable Depth Burrows-Wheeler Transform (v-bwt). First, we describe our new algorithm, and show that it is reversible. Next, we show how to use the transform to support efficient text indexing and approximate pattern matching. Lastly, we empirically evaluate the use of the v-bwt for DNA and English text collections, and show a significant improvement in approximate search efficiency over more traditional q-gram based approximate pattern matching algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信