释放具有隐私保护的SVM分类器

Keng-Pei Lin, Ming-Syan Chen
{"title":"释放具有隐私保护的SVM分类器","authors":"Keng-Pei Lin, Ming-Syan Chen","doi":"10.1109/ICDM.2008.19","DOIUrl":null,"url":null,"abstract":"Support vector machine (SVM) is a widely used tool in classification problem. SVM solves a quadratic optimization problem to decide which instances of training dataset are support vectors, i.e., the necessarily informative instances to form the classifier. The support vectors are intact tuples taken from the training dataset. Releasing the SVM classifier to public use or shipping the SVM classifier to clients will disclose the private content of support vectors, violating the privacy-preservation requirement in some legal or commercial reasons. To the best of our knowledge, there has not been work extending the notion of privacy-preservation to releasing the SVM classifier. In this paper, we propose an approximation approach which post-processes the SVM classifier to protect the private content of support vectors. This approach is designed for the commonly used Gaussian radial basis function kernel. By applying this post-processor on the SVM classifier, the resulted privacy-preserving SVM classifier can be publicly released without exposing the private content of support vectors and is able to provide comparable classification accuracy to the original SVM classifier.","PeriodicalId":252958,"journal":{"name":"2008 Eighth IEEE International Conference on Data Mining","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Releasing the SVM Classifier with Privacy-Preservation\",\"authors\":\"Keng-Pei Lin, Ming-Syan Chen\",\"doi\":\"10.1109/ICDM.2008.19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Support vector machine (SVM) is a widely used tool in classification problem. SVM solves a quadratic optimization problem to decide which instances of training dataset are support vectors, i.e., the necessarily informative instances to form the classifier. The support vectors are intact tuples taken from the training dataset. Releasing the SVM classifier to public use or shipping the SVM classifier to clients will disclose the private content of support vectors, violating the privacy-preservation requirement in some legal or commercial reasons. To the best of our knowledge, there has not been work extending the notion of privacy-preservation to releasing the SVM classifier. In this paper, we propose an approximation approach which post-processes the SVM classifier to protect the private content of support vectors. This approach is designed for the commonly used Gaussian radial basis function kernel. By applying this post-processor on the SVM classifier, the resulted privacy-preserving SVM classifier can be publicly released without exposing the private content of support vectors and is able to provide comparable classification accuracy to the original SVM classifier.\",\"PeriodicalId\":252958,\"journal\":{\"name\":\"2008 Eighth IEEE International Conference on Data Mining\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Eighth IEEE International Conference on Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM.2008.19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Eighth IEEE International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2008.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

支持向量机(SVM)是一种广泛应用于分类问题的工具。支持向量机解决了一个二次优化问题,以确定哪些训练数据集中的实例是支持向量,即构成分类器的必要信息实例。支持向量是取自训练数据集的完整元组。将SVM分类器发布给公众使用或将SVM分类器交付给客户会泄露支持向量的私有内容,出于某些法律或商业原因违反了隐私保护要求。据我们所知,还没有将隐私保护的概念扩展到发布SVM分类器的工作。本文提出了一种近似方法,对支持向量机分类器进行后处理,以保护支持向量的私有内容。该方法是针对常用的高斯径向基函数核设计的。通过将该后处理器应用于SVM分类器,得到的保持隐私的SVM分类器可以公开发布,而不会暴露支持向量的隐私内容,并且能够提供与原始SVM分类器相当的分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Releasing the SVM Classifier with Privacy-Preservation
Support vector machine (SVM) is a widely used tool in classification problem. SVM solves a quadratic optimization problem to decide which instances of training dataset are support vectors, i.e., the necessarily informative instances to form the classifier. The support vectors are intact tuples taken from the training dataset. Releasing the SVM classifier to public use or shipping the SVM classifier to clients will disclose the private content of support vectors, violating the privacy-preservation requirement in some legal or commercial reasons. To the best of our knowledge, there has not been work extending the notion of privacy-preservation to releasing the SVM classifier. In this paper, we propose an approximation approach which post-processes the SVM classifier to protect the private content of support vectors. This approach is designed for the commonly used Gaussian radial basis function kernel. By applying this post-processor on the SVM classifier, the resulted privacy-preserving SVM classifier can be publicly released without exposing the private content of support vectors and is able to provide comparable classification accuracy to the original SVM classifier.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信