预测户外跑步运动的心率反应

Xiaoli Liu, Xiang Su, S. Tamminen, Topi Korhonen, J. Röning
{"title":"预测户外跑步运动的心率反应","authors":"Xiaoli Liu, Xiang Su, S. Tamminen, Topi Korhonen, J. Röning","doi":"10.1109/CBMS.2019.00052","DOIUrl":null,"url":null,"abstract":"Heart rate is a good measure for physical exercise as it accurately reflects exercise intensity and is easy to measure. If the heart rate response to a complete exercise session is predicted beforehand, information related to the exercise can be inferred, such as exercise intensity and calorie consumption. While most current heart rate prediction models are developed and tested for the scenarios of indoor running exercise or low running speed exercise, we adopt a nonlinear Ordinary Differential Equation (ODE) model for complete outdoor running exercise sessions to predict the heart rate response and identify the parameters of the model with machine learning algorithms. The proposed model enables us to predict a complete outdoor running exercise session instead of predicting the heart rate for a short duration. Model validation is carried out both on the training and testing sets. Our results show that the proposed model captures very stable prediction performance.","PeriodicalId":311634,"journal":{"name":"2019 IEEE 32nd International Symposium on Computer-Based Medical Systems (CBMS)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Predicting the Heart Rate Response to Outdoor Running Exercise\",\"authors\":\"Xiaoli Liu, Xiang Su, S. Tamminen, Topi Korhonen, J. Röning\",\"doi\":\"10.1109/CBMS.2019.00052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Heart rate is a good measure for physical exercise as it accurately reflects exercise intensity and is easy to measure. If the heart rate response to a complete exercise session is predicted beforehand, information related to the exercise can be inferred, such as exercise intensity and calorie consumption. While most current heart rate prediction models are developed and tested for the scenarios of indoor running exercise or low running speed exercise, we adopt a nonlinear Ordinary Differential Equation (ODE) model for complete outdoor running exercise sessions to predict the heart rate response and identify the parameters of the model with machine learning algorithms. The proposed model enables us to predict a complete outdoor running exercise session instead of predicting the heart rate for a short duration. Model validation is carried out both on the training and testing sets. Our results show that the proposed model captures very stable prediction performance.\",\"PeriodicalId\":311634,\"journal\":{\"name\":\"2019 IEEE 32nd International Symposium on Computer-Based Medical Systems (CBMS)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 32nd International Symposium on Computer-Based Medical Systems (CBMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMS.2019.00052\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 32nd International Symposium on Computer-Based Medical Systems (CBMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS.2019.00052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

心率是衡量体育锻炼的一个很好的指标,因为它能准确地反映运动强度,而且易于测量。如果事先预测到完整运动过程中的心率反应,就可以推断出与运动有关的信息,如运动强度和卡路里消耗。虽然目前大多数心率预测模型都是针对室内跑步运动或低跑步速度运动的场景开发和测试的,但我们采用非线性常微分方程(ODE)模型来预测完整的户外跑步运动时段的心率反应,并使用机器学习算法识别模型的参数。所提出的模型使我们能够预测一个完整的户外跑步锻炼时段,而不是预测短时间内的心率。在训练集和测试集上对模型进行验证。结果表明,该模型具有非常稳定的预测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting the Heart Rate Response to Outdoor Running Exercise
Heart rate is a good measure for physical exercise as it accurately reflects exercise intensity and is easy to measure. If the heart rate response to a complete exercise session is predicted beforehand, information related to the exercise can be inferred, such as exercise intensity and calorie consumption. While most current heart rate prediction models are developed and tested for the scenarios of indoor running exercise or low running speed exercise, we adopt a nonlinear Ordinary Differential Equation (ODE) model for complete outdoor running exercise sessions to predict the heart rate response and identify the parameters of the model with machine learning algorithms. The proposed model enables us to predict a complete outdoor running exercise session instead of predicting the heart rate for a short duration. Model validation is carried out both on the training and testing sets. Our results show that the proposed model captures very stable prediction performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信