实验两相流信号分析的复杂网络强度分布

Z. Gao, Lingchao Ji
{"title":"实验两相流信号分析的复杂网络强度分布","authors":"Z. Gao, Lingchao Ji","doi":"10.1109/ICACI.2012.6463118","DOIUrl":null,"url":null,"abstract":"We propose a reliable method for constructing complex network from a time series based on phase space reconstruction and construct complex flow networks using the conductance fluctuating signals measured from gas-liquid two-phase flow experiment. After detecting the node strength distribution of the networks, we show that the strength distribution of the resulting networks can be well fitted with a power law. Furthermore, we using the method of chaotic recurrence plot explore the physical implications of network strength distribution. To investigate the dynamic characteristics of gas-liquid flow, we construct 50 complex flow networks under different flow conditions, and find that the power-law exponent, which is sensitive to the flow pattern transition, can really characterize the nonlinear dynamics of gas-liquid two-phase flow. In this paper, from a new perspective, we not only propose a novel method to study nonlinear time series signals in practice, but also indicate that complex network may be a powerful tool for exploring complex nonlinear dynamic systems.","PeriodicalId":404759,"journal":{"name":"2012 IEEE Fifth International Conference on Advanced Computational Intelligence (ICACI)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strength distribution in complex network for analyzing experimental two-phase flow signals\",\"authors\":\"Z. Gao, Lingchao Ji\",\"doi\":\"10.1109/ICACI.2012.6463118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a reliable method for constructing complex network from a time series based on phase space reconstruction and construct complex flow networks using the conductance fluctuating signals measured from gas-liquid two-phase flow experiment. After detecting the node strength distribution of the networks, we show that the strength distribution of the resulting networks can be well fitted with a power law. Furthermore, we using the method of chaotic recurrence plot explore the physical implications of network strength distribution. To investigate the dynamic characteristics of gas-liquid flow, we construct 50 complex flow networks under different flow conditions, and find that the power-law exponent, which is sensitive to the flow pattern transition, can really characterize the nonlinear dynamics of gas-liquid two-phase flow. In this paper, from a new perspective, we not only propose a novel method to study nonlinear time series signals in practice, but also indicate that complex network may be a powerful tool for exploring complex nonlinear dynamic systems.\",\"PeriodicalId\":404759,\"journal\":{\"name\":\"2012 IEEE Fifth International Conference on Advanced Computational Intelligence (ICACI)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Fifth International Conference on Advanced Computational Intelligence (ICACI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICACI.2012.6463118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Fifth International Conference on Advanced Computational Intelligence (ICACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACI.2012.6463118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种可靠的基于相空间重构的时间序列复杂网络构建方法,并利用气液两相流实验测得的电导波动信号构建复杂流动网络。在检测了网络的节点强度分布后,我们证明了所得网络的强度分布可以很好地拟合为幂律。此外,我们利用混沌递归图的方法探讨了网络强度分布的物理含义。为了研究气液两相流动的动力学特性,我们构建了50个不同流动条件下的复杂流动网络,发现幂律指数对流型转换非常敏感,能够真实表征气液两相流动的非线性动力学特性。在本文中,我们从一个新的角度,不仅提出了一种在实践中研究非线性时间序列信号的新方法,而且表明复杂网络可能是探索复杂非线性动态系统的有力工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Strength distribution in complex network for analyzing experimental two-phase flow signals
We propose a reliable method for constructing complex network from a time series based on phase space reconstruction and construct complex flow networks using the conductance fluctuating signals measured from gas-liquid two-phase flow experiment. After detecting the node strength distribution of the networks, we show that the strength distribution of the resulting networks can be well fitted with a power law. Furthermore, we using the method of chaotic recurrence plot explore the physical implications of network strength distribution. To investigate the dynamic characteristics of gas-liquid flow, we construct 50 complex flow networks under different flow conditions, and find that the power-law exponent, which is sensitive to the flow pattern transition, can really characterize the nonlinear dynamics of gas-liquid two-phase flow. In this paper, from a new perspective, we not only propose a novel method to study nonlinear time series signals in practice, but also indicate that complex network may be a powerful tool for exploring complex nonlinear dynamic systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信