通过策划和开放的网络资源进行问答

Rishiraj Saha Roy, Avishek Anand
{"title":"通过策划和开放的网络资源进行问答","authors":"Rishiraj Saha Roy, Avishek Anand","doi":"10.1145/3409256.3409809","DOIUrl":null,"url":null,"abstract":"The last few years have seen an explosion of research on the topic of automated question answering (QA), spanning the communities of information retrieval, natural language processing, and artificial intelligence. This tutorial would cover the highlights of this really active period of growth for QA to give the audience a grasp over the families of algorithms that are currently being used. We partition research contributions by the underlying source from where answers are retrieved: curated knowledge graphs, unstructured text, or hybrid corpora. We choose this dimension of partitioning as it is the most discriminative when it comes to algorithm design. Other key dimensions are covered within each sub-topic: like the complexity of questions addressed, and degrees of explainability and interactivity introduced in the systems. We would conclude the tutorial with the most promising emerging trends in the expanse of QA, that would help new entrants into this field make the best decisions to take the community forward. This tutorial was recently presented at SIGIR 2020.","PeriodicalId":430907,"journal":{"name":"Proceedings of the 2020 ACM SIGIR on International Conference on Theory of Information Retrieval","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Question Answering over Curated and Open Web Sources\",\"authors\":\"Rishiraj Saha Roy, Avishek Anand\",\"doi\":\"10.1145/3409256.3409809\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The last few years have seen an explosion of research on the topic of automated question answering (QA), spanning the communities of information retrieval, natural language processing, and artificial intelligence. This tutorial would cover the highlights of this really active period of growth for QA to give the audience a grasp over the families of algorithms that are currently being used. We partition research contributions by the underlying source from where answers are retrieved: curated knowledge graphs, unstructured text, or hybrid corpora. We choose this dimension of partitioning as it is the most discriminative when it comes to algorithm design. Other key dimensions are covered within each sub-topic: like the complexity of questions addressed, and degrees of explainability and interactivity introduced in the systems. We would conclude the tutorial with the most promising emerging trends in the expanse of QA, that would help new entrants into this field make the best decisions to take the community forward. This tutorial was recently presented at SIGIR 2020.\",\"PeriodicalId\":430907,\"journal\":{\"name\":\"Proceedings of the 2020 ACM SIGIR on International Conference on Theory of Information Retrieval\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2020 ACM SIGIR on International Conference on Theory of Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3409256.3409809\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 ACM SIGIR on International Conference on Theory of Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3409256.3409809","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在过去的几年里,关于自动问答(QA)主题的研究出现了爆炸式增长,涵盖了信息检索、自然语言处理和人工智能等领域。本教程将涵盖QA真正活跃的增长时期的亮点,让读者掌握当前使用的算法系列。我们根据检索答案的基础来源划分研究贡献:策划知识图,非结构化文本或混合语料库。我们之所以选择这个划分维度,是因为它在算法设计中是最具判别性的。每个子主题涵盖了其他关键维度:比如所处理问题的复杂性,以及系统中引入的可解释性和交互性的程度。我们将以QA领域中最有前途的新兴趋势来结束本教程,这将帮助这个领域的新进入者做出最好的决定,推动社区向前发展。本教程最近在SIGIR 2020上发表。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Question Answering over Curated and Open Web Sources
The last few years have seen an explosion of research on the topic of automated question answering (QA), spanning the communities of information retrieval, natural language processing, and artificial intelligence. This tutorial would cover the highlights of this really active period of growth for QA to give the audience a grasp over the families of algorithms that are currently being used. We partition research contributions by the underlying source from where answers are retrieved: curated knowledge graphs, unstructured text, or hybrid corpora. We choose this dimension of partitioning as it is the most discriminative when it comes to algorithm design. Other key dimensions are covered within each sub-topic: like the complexity of questions addressed, and degrees of explainability and interactivity introduced in the systems. We would conclude the tutorial with the most promising emerging trends in the expanse of QA, that would help new entrants into this field make the best decisions to take the community forward. This tutorial was recently presented at SIGIR 2020.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信