Y. Zaki, Thomas Pötsch, Jay Chen, L. Subramanian, C. Görg
{"title":"不可预测蜂窝网络的自适应拥塞控制","authors":"Y. Zaki, Thomas Pötsch, Jay Chen, L. Subramanian, C. Görg","doi":"10.1145/2785956.2787498","DOIUrl":null,"url":null,"abstract":"Legacy congestion controls including TCP and its variants are known to perform poorly over cellular networks due to highly variable capacities over short time scales, self-inflicted packet delays, and packet losses unrelated to congestion. To cope with these challenges, we present Verus, an end-to-end congestion control protocol that uses delay measurements to react quickly to the capacity changes in cellular networks without explicitly attempting to predict the cellular channel dynamics. The key idea of Verus is to continuously learn a delay profile that captures the relationship between end-to-end packet delay and outstanding window size over short epochs and uses this relationship to increment or decrement the window size based on the observed short-term packet delay variations. While the delay-based control is primarily for congestion avoidance, Verus uses standard TCP features including multiplicative decrease upon packet loss and slow start. Through a combination of simulations, empirical evaluations using cellular network traces, and real-world evaluations against standard TCP flavors and state of the art protocols like Sprout, we show that Verus outperforms these protocols in cellular channels. In comparison to TCP Cubic, Verus achieves an order of magnitude (> 10x) reduction in delay over 3G and LTE networks while achieving comparable throughput (sometimes marginally higher). In comparison to Sprout, Verus achieves up to 30% higher throughput in rapidly changing cellular networks.","PeriodicalId":268472,"journal":{"name":"Proceedings of the 2015 ACM Conference on Special Interest Group on Data Communication","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"198","resultStr":"{\"title\":\"Adaptive Congestion Control for Unpredictable Cellular Networks\",\"authors\":\"Y. Zaki, Thomas Pötsch, Jay Chen, L. Subramanian, C. Görg\",\"doi\":\"10.1145/2785956.2787498\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Legacy congestion controls including TCP and its variants are known to perform poorly over cellular networks due to highly variable capacities over short time scales, self-inflicted packet delays, and packet losses unrelated to congestion. To cope with these challenges, we present Verus, an end-to-end congestion control protocol that uses delay measurements to react quickly to the capacity changes in cellular networks without explicitly attempting to predict the cellular channel dynamics. The key idea of Verus is to continuously learn a delay profile that captures the relationship between end-to-end packet delay and outstanding window size over short epochs and uses this relationship to increment or decrement the window size based on the observed short-term packet delay variations. While the delay-based control is primarily for congestion avoidance, Verus uses standard TCP features including multiplicative decrease upon packet loss and slow start. Through a combination of simulations, empirical evaluations using cellular network traces, and real-world evaluations against standard TCP flavors and state of the art protocols like Sprout, we show that Verus outperforms these protocols in cellular channels. In comparison to TCP Cubic, Verus achieves an order of magnitude (> 10x) reduction in delay over 3G and LTE networks while achieving comparable throughput (sometimes marginally higher). In comparison to Sprout, Verus achieves up to 30% higher throughput in rapidly changing cellular networks.\",\"PeriodicalId\":268472,\"journal\":{\"name\":\"Proceedings of the 2015 ACM Conference on Special Interest Group on Data Communication\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"198\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2015 ACM Conference on Special Interest Group on Data Communication\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2785956.2787498\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 ACM Conference on Special Interest Group on Data Communication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2785956.2787498","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Adaptive Congestion Control for Unpredictable Cellular Networks
Legacy congestion controls including TCP and its variants are known to perform poorly over cellular networks due to highly variable capacities over short time scales, self-inflicted packet delays, and packet losses unrelated to congestion. To cope with these challenges, we present Verus, an end-to-end congestion control protocol that uses delay measurements to react quickly to the capacity changes in cellular networks without explicitly attempting to predict the cellular channel dynamics. The key idea of Verus is to continuously learn a delay profile that captures the relationship between end-to-end packet delay and outstanding window size over short epochs and uses this relationship to increment or decrement the window size based on the observed short-term packet delay variations. While the delay-based control is primarily for congestion avoidance, Verus uses standard TCP features including multiplicative decrease upon packet loss and slow start. Through a combination of simulations, empirical evaluations using cellular network traces, and real-world evaluations against standard TCP flavors and state of the art protocols like Sprout, we show that Verus outperforms these protocols in cellular channels. In comparison to TCP Cubic, Verus achieves an order of magnitude (> 10x) reduction in delay over 3G and LTE networks while achieving comparable throughput (sometimes marginally higher). In comparison to Sprout, Verus achieves up to 30% higher throughput in rapidly changing cellular networks.