利用遗传算法改进图像分割

Huynh Thi Thanh Binh, M. Loi, N. T. Thuy
{"title":"利用遗传算法改进图像分割","authors":"Huynh Thi Thanh Binh, M. Loi, N. T. Thuy","doi":"10.1109/ICMLA.2012.134","DOIUrl":null,"url":null,"abstract":"This paper presents a new approach to the problem of semantic segmentation of digital images. We aim to improve the performance of some state-of-the-art approaches for the task. We exploit a new version of texton feature [28], which can encode image texture and object layout for learning a robust classifier. We propose to use a genetic algorithm for the learning parameters of weak classifiers in a boosting learning set up. We conducted extensive experiments on benchmark image datasets and compared the segmentation results with current proposed systems. The experimental results show that the performance of our system is comparable to, or even outperforms, those state-of-the-art algorithms. This is a promising approach as in this empirical study we used only texture-layout filter responses as feature and a basic setting of genetic algorithm. The framework is simple and can be extended and improved for many learning problems.","PeriodicalId":157399,"journal":{"name":"2012 11th International Conference on Machine Learning and Applications","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Improving Image Segmentation Using Genetic Algorithm\",\"authors\":\"Huynh Thi Thanh Binh, M. Loi, N. T. Thuy\",\"doi\":\"10.1109/ICMLA.2012.134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new approach to the problem of semantic segmentation of digital images. We aim to improve the performance of some state-of-the-art approaches for the task. We exploit a new version of texton feature [28], which can encode image texture and object layout for learning a robust classifier. We propose to use a genetic algorithm for the learning parameters of weak classifiers in a boosting learning set up. We conducted extensive experiments on benchmark image datasets and compared the segmentation results with current proposed systems. The experimental results show that the performance of our system is comparable to, or even outperforms, those state-of-the-art algorithms. This is a promising approach as in this empirical study we used only texture-layout filter responses as feature and a basic setting of genetic algorithm. The framework is simple and can be extended and improved for many learning problems.\",\"PeriodicalId\":157399,\"journal\":{\"name\":\"2012 11th International Conference on Machine Learning and Applications\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 11th International Conference on Machine Learning and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2012.134\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 11th International Conference on Machine Learning and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2012.134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文提出了一种新的数字图像语义分割方法。我们的目标是改进一些最先进的方法的性能。我们利用了一个新版本的texton特征[28],它可以编码图像纹理和对象布局,以学习一个鲁棒分类器。我们提出使用遗传算法对弱分类器的学习参数进行增强学习。我们在基准图像数据集上进行了大量实验,并将分割结果与当前提出的系统进行了比较。实验结果表明,我们的系统性能与那些最先进的算法相当,甚至优于这些算法。这是一种很有前途的方法,因为在本实证研究中,我们只使用纹理布局过滤器响应作为特征和遗传算法的基本设置。该框架很简单,可以针对许多学习问题进行扩展和改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving Image Segmentation Using Genetic Algorithm
This paper presents a new approach to the problem of semantic segmentation of digital images. We aim to improve the performance of some state-of-the-art approaches for the task. We exploit a new version of texton feature [28], which can encode image texture and object layout for learning a robust classifier. We propose to use a genetic algorithm for the learning parameters of weak classifiers in a boosting learning set up. We conducted extensive experiments on benchmark image datasets and compared the segmentation results with current proposed systems. The experimental results show that the performance of our system is comparable to, or even outperforms, those state-of-the-art algorithms. This is a promising approach as in this empirical study we used only texture-layout filter responses as feature and a basic setting of genetic algorithm. The framework is simple and can be extended and improved for many learning problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信