次优控制的鲁棒性:增益和相位裕度

M. Sezer, D. Siljak
{"title":"次优控制的鲁棒性:增益和相位裕度","authors":"M. Sezer, D. Siljak","doi":"10.1109/CDC.1980.271927","DOIUrl":null,"url":null,"abstract":"The purpose of this paper is to introduce the gain and phase margin as measures of robustness of suboptimal linear-quadratic regulators. It will be shown that the suboptimal control retains the infinite gain margin of the corresponding optimal system, but that the phase margin and gain reduction tolerance depend on the degree of suboptimality of the nominal optimal control law. This establishes the degree of suboptimality as an index of both the system performance regarding the optimality criterion and the robustness to plant parameter uncertainties and distortions of the optimal control law. It will also be shown that the suboptimal closed-loop systems remain stable despite insertion of memoryless nonlinear gains inside individual feedback loops, thus raising further the confidence in suboptimal designs of linear-quadratic regulators.","PeriodicalId":332964,"journal":{"name":"1980 19th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1980-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":"{\"title\":\"Robustness of suboptimal control: Gain and phase margin\",\"authors\":\"M. Sezer, D. Siljak\",\"doi\":\"10.1109/CDC.1980.271927\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this paper is to introduce the gain and phase margin as measures of robustness of suboptimal linear-quadratic regulators. It will be shown that the suboptimal control retains the infinite gain margin of the corresponding optimal system, but that the phase margin and gain reduction tolerance depend on the degree of suboptimality of the nominal optimal control law. This establishes the degree of suboptimality as an index of both the system performance regarding the optimality criterion and the robustness to plant parameter uncertainties and distortions of the optimal control law. It will also be shown that the suboptimal closed-loop systems remain stable despite insertion of memoryless nonlinear gains inside individual feedback loops, thus raising further the confidence in suboptimal designs of linear-quadratic regulators.\",\"PeriodicalId\":332964,\"journal\":{\"name\":\"1980 19th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1980-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"39\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1980 19th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDC.1980.271927\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1980 19th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.1980.271927","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

摘要

本文的目的是引入增益和相位裕度作为次优线性二次型稳健性的度量。结果表明,次优控制保留了相应最优系统的无限增益裕度,但相位裕度和增益减小容限取决于标称最优控制律的次优程度。这就建立了次最优度作为系统性能的指标,既考虑了最优性准则,也考虑了最优控制律对植物参数不确定性和扭曲的鲁棒性。还将表明,尽管在单个反馈回路中插入无记忆非线性增益,但次优闭环系统仍保持稳定,从而进一步提高了对线性二次型调节器次优设计的信心。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robustness of suboptimal control: Gain and phase margin
The purpose of this paper is to introduce the gain and phase margin as measures of robustness of suboptimal linear-quadratic regulators. It will be shown that the suboptimal control retains the infinite gain margin of the corresponding optimal system, but that the phase margin and gain reduction tolerance depend on the degree of suboptimality of the nominal optimal control law. This establishes the degree of suboptimality as an index of both the system performance regarding the optimality criterion and the robustness to plant parameter uncertainties and distortions of the optimal control law. It will also be shown that the suboptimal closed-loop systems remain stable despite insertion of memoryless nonlinear gains inside individual feedback loops, thus raising further the confidence in suboptimal designs of linear-quadratic regulators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信