用大信号模型分析行波管对反射信号的稳定性

V. Srivastava, S. Joshi, R. Carter
{"title":"用大信号模型分析行波管对反射信号的稳定性","authors":"V. Srivastava, S. Joshi, R. Carter","doi":"10.1109/ICMMT.2000.895625","DOIUrl":null,"url":null,"abstract":"A large signal model is used to analyze the stability of a high gain helix TWT against the reflected signals caused by mismatches at its input and output terminations. The stability of a section of the tube in the presence of the reflected signals is determined by making a number of passes through the section for a very low drive power. A section is considered stable if the output power converges after 4 passes. If the output power goes on increasing or does not converge then the section is defined as unstable. Results are presented for a 60 W helix TWT which is designed both in a two-section and in a three-section configuration for a small-signal gain of more than 60 dB. It is shown that the two-section TWT can be made stable with 10 dB return loss at the input and output terminations, only if the tip loss profile at the sever can be designed to have a return loss of more than 30 dB. For the three-section tube, the return loss at the sever does not need to be greater than 20 dB for stable output performance.","PeriodicalId":354225,"journal":{"name":"ICMMT 2000. 2000 2nd International Conference on Microwave and Millimeter Wave Technology Proceedings (Cat. No.00EX364)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Stability analysis of a TWT against the reflected signals using a large-signal model\",\"authors\":\"V. Srivastava, S. Joshi, R. Carter\",\"doi\":\"10.1109/ICMMT.2000.895625\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A large signal model is used to analyze the stability of a high gain helix TWT against the reflected signals caused by mismatches at its input and output terminations. The stability of a section of the tube in the presence of the reflected signals is determined by making a number of passes through the section for a very low drive power. A section is considered stable if the output power converges after 4 passes. If the output power goes on increasing or does not converge then the section is defined as unstable. Results are presented for a 60 W helix TWT which is designed both in a two-section and in a three-section configuration for a small-signal gain of more than 60 dB. It is shown that the two-section TWT can be made stable with 10 dB return loss at the input and output terminations, only if the tip loss profile at the sever can be designed to have a return loss of more than 30 dB. For the three-section tube, the return loss at the sever does not need to be greater than 20 dB for stable output performance.\",\"PeriodicalId\":354225,\"journal\":{\"name\":\"ICMMT 2000. 2000 2nd International Conference on Microwave and Millimeter Wave Technology Proceedings (Cat. No.00EX364)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICMMT 2000. 2000 2nd International Conference on Microwave and Millimeter Wave Technology Proceedings (Cat. No.00EX364)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMMT.2000.895625\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICMMT 2000. 2000 2nd International Conference on Microwave and Millimeter Wave Technology Proceedings (Cat. No.00EX364)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMMT.2000.895625","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

采用大信号模型分析了高增益螺旋行波管对输入输出端不匹配引起的反射信号的稳定性。在反射信号存在的情况下,管的一部分的稳定性是通过在非常低的驱动功率下通过该部分的若干次来确定的。如果输出功率经过4次后收敛,则认为一段是稳定的。如果输出功率继续增加或不收敛,则该部分被定义为不稳定。本文给出了一种60w螺旋行波管的设计结果,该行波管采用两段和三段两种结构,可获得大于60db的小信号增益。研究结果表明,只有在服务器端尖端损耗曲线设计为回波损耗大于30 dB时,才能使两段行波管在输入端和输出端具有10 dB的稳定回波损耗。对于三段管,为了稳定的输出性能,服务器处的回波损耗不需要大于20db。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability analysis of a TWT against the reflected signals using a large-signal model
A large signal model is used to analyze the stability of a high gain helix TWT against the reflected signals caused by mismatches at its input and output terminations. The stability of a section of the tube in the presence of the reflected signals is determined by making a number of passes through the section for a very low drive power. A section is considered stable if the output power converges after 4 passes. If the output power goes on increasing or does not converge then the section is defined as unstable. Results are presented for a 60 W helix TWT which is designed both in a two-section and in a three-section configuration for a small-signal gain of more than 60 dB. It is shown that the two-section TWT can be made stable with 10 dB return loss at the input and output terminations, only if the tip loss profile at the sever can be designed to have a return loss of more than 30 dB. For the three-section tube, the return loss at the sever does not need to be greater than 20 dB for stable output performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信