基于遗传算法的配电网线损优化研究

Lingyi Li, Chunwei Wang, Yueming Li, Shujian Zhao, Xinya Wang, Siyu Han
{"title":"基于遗传算法的配电网线损优化研究","authors":"Lingyi Li, Chunwei Wang, Yueming Li, Shujian Zhao, Xinya Wang, Siyu Han","doi":"10.1109/CEEPE55110.2022.9783383","DOIUrl":null,"url":null,"abstract":"In this paper, An artificial intelligence algorithm-genetic algorithm is adopted. Through the improvement of the genetic algorithm, the grid reconfiguration of the distribution network is carried out, and the optimal grid structure under the constraint conditions is sought, and finally the line loss is minimized under the normal operation of the grid. Achieve the effect of reducing line loss and increase corporate efficiency.","PeriodicalId":118143,"journal":{"name":"2022 5th International Conference on Energy, Electrical and Power Engineering (CEEPE)","volume":"1998 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on Optimization of Line Loss of Distribution Network Based on Genetic Algorithm\",\"authors\":\"Lingyi Li, Chunwei Wang, Yueming Li, Shujian Zhao, Xinya Wang, Siyu Han\",\"doi\":\"10.1109/CEEPE55110.2022.9783383\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, An artificial intelligence algorithm-genetic algorithm is adopted. Through the improvement of the genetic algorithm, the grid reconfiguration of the distribution network is carried out, and the optimal grid structure under the constraint conditions is sought, and finally the line loss is minimized under the normal operation of the grid. Achieve the effect of reducing line loss and increase corporate efficiency.\",\"PeriodicalId\":118143,\"journal\":{\"name\":\"2022 5th International Conference on Energy, Electrical and Power Engineering (CEEPE)\",\"volume\":\"1998 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 5th International Conference on Energy, Electrical and Power Engineering (CEEPE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEEPE55110.2022.9783383\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 5th International Conference on Energy, Electrical and Power Engineering (CEEPE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEEPE55110.2022.9783383","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文采用了一种人工智能算法——遗传算法。通过对遗传算法的改进,对配电网进行电网重构,寻求约束条件下的最优电网结构,最终使电网正常运行下的线损最小。达到降低线损,提高企业效率的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on Optimization of Line Loss of Distribution Network Based on Genetic Algorithm
In this paper, An artificial intelligence algorithm-genetic algorithm is adopted. Through the improvement of the genetic algorithm, the grid reconfiguration of the distribution network is carried out, and the optimal grid structure under the constraint conditions is sought, and finally the line loss is minimized under the normal operation of the grid. Achieve the effect of reducing line loss and increase corporate efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信