使用机器学习的车道线检测

P. Upadhyay, S. Srivastava, Siddharth S. Pandey, Aanandi Goel
{"title":"使用机器学习的车道线检测","authors":"P. Upadhyay, S. Srivastava, Siddharth S. Pandey, Aanandi Goel","doi":"10.1109/ICICT55121.2022.10064598","DOIUrl":null,"url":null,"abstract":"Driving vehicles on roads in conditions such as fuzzy view, showery, and inside the tunnel is difficult for a driver. This research describes a reliable method for recognising road lanes in real time. The complexity of the road environment makes lane detection difficult. The test result shows that the design is accurate and robust for seeing the road lane. To improve traffic safety, this research paper suggests a real-time, efficient lane detecting approach.","PeriodicalId":181396,"journal":{"name":"2022 3rd International Conference on Issues and Challenges in Intelligent Computing Techniques (ICICT)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lane Line Detection Using Machine Learning\",\"authors\":\"P. Upadhyay, S. Srivastava, Siddharth S. Pandey, Aanandi Goel\",\"doi\":\"10.1109/ICICT55121.2022.10064598\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Driving vehicles on roads in conditions such as fuzzy view, showery, and inside the tunnel is difficult for a driver. This research describes a reliable method for recognising road lanes in real time. The complexity of the road environment makes lane detection difficult. The test result shows that the design is accurate and robust for seeing the road lane. To improve traffic safety, this research paper suggests a real-time, efficient lane detecting approach.\",\"PeriodicalId\":181396,\"journal\":{\"name\":\"2022 3rd International Conference on Issues and Challenges in Intelligent Computing Techniques (ICICT)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 3rd International Conference on Issues and Challenges in Intelligent Computing Techniques (ICICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICT55121.2022.10064598\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 3rd International Conference on Issues and Challenges in Intelligent Computing Techniques (ICICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICT55121.2022.10064598","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在视野模糊、下阵雨、隧道内等情况下,驾驶车辆非常困难。本研究描述了一种可靠的实时车道识别方法。道路环境的复杂性给车道检测带来了困难。试验结果表明,该设计具有准确、稳健的车道识别功能。为了提高交通安全,本文提出了一种实时、高效的车道检测方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lane Line Detection Using Machine Learning
Driving vehicles on roads in conditions such as fuzzy view, showery, and inside the tunnel is difficult for a driver. This research describes a reliable method for recognising road lanes in real time. The complexity of the road environment makes lane detection difficult. The test result shows that the design is accurate and robust for seeing the road lane. To improve traffic safety, this research paper suggests a real-time, efficient lane detecting approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信