信息特征选择的准浮雕分类方法

S. Subbotin
{"title":"信息特征选择的准浮雕分类方法","authors":"S. Subbotin","doi":"10.1109/STC-CSIT.2018.8526627","DOIUrl":null,"url":null,"abstract":"The feature selection problem for classification is addressed. The modified Relief method is proposed. It selects a subsample from the original sample, computes hashes for instances, used to select and delete redundant instances, compute feature similarity and difference, and updates the feature weights. The experiments to study the proposed method have been carried out. They showed that the proposed method provides a significant acceleration of computations.","PeriodicalId":403793,"journal":{"name":"2018 IEEE 13th International Scientific and Technical Conference on Computer Sciences and Information Technologies (CSIT)","volume":"2007 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Quasi-Relief Method of Informative Features Selection for Classification\",\"authors\":\"S. Subbotin\",\"doi\":\"10.1109/STC-CSIT.2018.8526627\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The feature selection problem for classification is addressed. The modified Relief method is proposed. It selects a subsample from the original sample, computes hashes for instances, used to select and delete redundant instances, compute feature similarity and difference, and updates the feature weights. The experiments to study the proposed method have been carried out. They showed that the proposed method provides a significant acceleration of computations.\",\"PeriodicalId\":403793,\"journal\":{\"name\":\"2018 IEEE 13th International Scientific and Technical Conference on Computer Sciences and Information Technologies (CSIT)\",\"volume\":\"2007 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 13th International Scientific and Technical Conference on Computer Sciences and Information Technologies (CSIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/STC-CSIT.2018.8526627\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 13th International Scientific and Technical Conference on Computer Sciences and Information Technologies (CSIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/STC-CSIT.2018.8526627","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

解决了分类中的特征选择问题。提出了改进的救济法。它从原始样本中选择子样本,计算实例的哈希值,用于选择和删除冗余实例,计算特征相似度和差异,并更新特征权重。对该方法进行了实验研究。他们表明,所提出的方法提供了计算的显著加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quasi-Relief Method of Informative Features Selection for Classification
The feature selection problem for classification is addressed. The modified Relief method is proposed. It selects a subsample from the original sample, computes hashes for instances, used to select and delete redundant instances, compute feature similarity and difference, and updates the feature weights. The experiments to study the proposed method have been carried out. They showed that the proposed method provides a significant acceleration of computations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信