基于心周期测定的cnn型心肌梗死预测

Tsubasa Kanai, N. Tanabe, Y. Miyagi, J. Aoyama
{"title":"基于心周期测定的cnn型心肌梗死预测","authors":"Tsubasa Kanai, N. Tanabe, Y. Miyagi, J. Aoyama","doi":"10.1109/ISPACS51563.2021.9651000","DOIUrl":null,"url":null,"abstract":"This paper proposes the cardiac infarction prediction based on CNN-type myocardial infarction prediction using evaluate of myocardial dynamics. The proposed algorithm (i) remove noise using masking image for the ultrasound images into frame-by-frame, (ii) determine the cardiac cycle using optical flow analysis [1] for the characteristic dynamics of each cardiac anatomical region, and then, (iii) predict the myocardial infarction using CNN from time-frequency analysis of myocardial dynamics.","PeriodicalId":359822,"journal":{"name":"2021 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CNN-type myocardial infarction prediction based on cardiac cycle determination\",\"authors\":\"Tsubasa Kanai, N. Tanabe, Y. Miyagi, J. Aoyama\",\"doi\":\"10.1109/ISPACS51563.2021.9651000\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes the cardiac infarction prediction based on CNN-type myocardial infarction prediction using evaluate of myocardial dynamics. The proposed algorithm (i) remove noise using masking image for the ultrasound images into frame-by-frame, (ii) determine the cardiac cycle using optical flow analysis [1] for the characteristic dynamics of each cardiac anatomical region, and then, (iii) predict the myocardial infarction using CNN from time-frequency analysis of myocardial dynamics.\",\"PeriodicalId\":359822,\"journal\":{\"name\":\"2021 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPACS51563.2021.9651000\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPACS51563.2021.9651000","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了基于心肌动力学评价的cnn型心肌梗死预测方法。本文提出的算法(1)对超声图像逐帧进行掩模去除噪声,(2)对心脏各解剖区域的特征动力学利用光流分析[1]确定心脏周期,然后(3)对心肌动力学进行时频分析,利用CNN预测心肌梗死。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CNN-type myocardial infarction prediction based on cardiac cycle determination
This paper proposes the cardiac infarction prediction based on CNN-type myocardial infarction prediction using evaluate of myocardial dynamics. The proposed algorithm (i) remove noise using masking image for the ultrasound images into frame-by-frame, (ii) determine the cardiac cycle using optical flow analysis [1] for the characteristic dynamics of each cardiac anatomical region, and then, (iii) predict the myocardial infarction using CNN from time-frequency analysis of myocardial dynamics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信