切比雪夫小波最优控制系统分析

V. Ramalakshmi, T. Balasubramanian, B. Kumar
{"title":"切比雪夫小波最优控制系统分析","authors":"V. Ramalakshmi, T. Balasubramanian, B. Kumar","doi":"10.21013/JTE.V4.N1.P7","DOIUrl":null,"url":null,"abstract":"In this paper, we derive new explicit formula for the matrix derivatives of chebyshev polynomial third degree because of this kind of polynomial is an important tool for numerical analysis of optimal controlling system. A numerical example is included to demonstrate the validity and applicability of the technique.","PeriodicalId":269688,"journal":{"name":"IRA-International Journal of Technology & Engineering","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of optimal controlling system using Chebyshev Wavelets\",\"authors\":\"V. Ramalakshmi, T. Balasubramanian, B. Kumar\",\"doi\":\"10.21013/JTE.V4.N1.P7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we derive new explicit formula for the matrix derivatives of chebyshev polynomial third degree because of this kind of polynomial is an important tool for numerical analysis of optimal controlling system. A numerical example is included to demonstrate the validity and applicability of the technique.\",\"PeriodicalId\":269688,\"journal\":{\"name\":\"IRA-International Journal of Technology & Engineering\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IRA-International Journal of Technology & Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21013/JTE.V4.N1.P7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IRA-International Journal of Technology & Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21013/JTE.V4.N1.P7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于切比雪夫多项式是最优控制系统数值分析的重要工具,本文导出了切比雪夫多项式三次矩阵导数的新的显式公式。最后通过数值算例验证了该方法的有效性和适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of optimal controlling system using Chebyshev Wavelets
In this paper, we derive new explicit formula for the matrix derivatives of chebyshev polynomial third degree because of this kind of polynomial is an important tool for numerical analysis of optimal controlling system. A numerical example is included to demonstrate the validity and applicability of the technique.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信