{"title":"一种自检有限状态机的状态编码","authors":"C. Bolchini, R. Montandon, F. Salice, D. Sciuto","doi":"10.1109/ASPDAC.1995.486392","DOIUrl":null,"url":null,"abstract":"The design of self-checking FSMs can be achieved by adopting an encoding for the state, for the output or for both. In this paper a state encoding in which the Hamming distance between each state and its possible next states is constant is proposed. The adoption of such an encoding and the application of specific techniques for achieving a complete fault detection property for faults occurring in the next-state logic are presented. Area overhead and fault coverage results on a set of MCNC benchmark FSMs are provided.","PeriodicalId":119232,"journal":{"name":"Proceedings of ASP-DAC'95/CHDL'95/VLSI'95 with EDA Technofair","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A state encoding for self-checking finite state machines\",\"authors\":\"C. Bolchini, R. Montandon, F. Salice, D. Sciuto\",\"doi\":\"10.1109/ASPDAC.1995.486392\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The design of self-checking FSMs can be achieved by adopting an encoding for the state, for the output or for both. In this paper a state encoding in which the Hamming distance between each state and its possible next states is constant is proposed. The adoption of such an encoding and the application of specific techniques for achieving a complete fault detection property for faults occurring in the next-state logic are presented. Area overhead and fault coverage results on a set of MCNC benchmark FSMs are provided.\",\"PeriodicalId\":119232,\"journal\":{\"name\":\"Proceedings of ASP-DAC'95/CHDL'95/VLSI'95 with EDA Technofair\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of ASP-DAC'95/CHDL'95/VLSI'95 with EDA Technofair\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASPDAC.1995.486392\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of ASP-DAC'95/CHDL'95/VLSI'95 with EDA Technofair","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASPDAC.1995.486392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A state encoding for self-checking finite state machines
The design of self-checking FSMs can be achieved by adopting an encoding for the state, for the output or for both. In this paper a state encoding in which the Hamming distance between each state and its possible next states is constant is proposed. The adoption of such an encoding and the application of specific techniques for achieving a complete fault detection property for faults occurring in the next-state logic are presented. Area overhead and fault coverage results on a set of MCNC benchmark FSMs are provided.