用自然语言处理改进学生调查

Karoline Hood, Patrick K. Kuiper
{"title":"用自然语言处理改进学生调查","authors":"Karoline Hood, Patrick K. Kuiper","doi":"10.1109/IRC.2018.00079","DOIUrl":null,"url":null,"abstract":"Stakeholders from academic institutions across the world employ surveys to assess the quality of their work. With surveys these stakeholders attempt to obtain quantified, structured, and directed data in order to make decisions. Often these stakeholders employ long, directed Likert scaled surveys to gain this information. We propose an alternate construction for academic surveys, where stakeholders provide 1-3 open ended \"free text\" questions, allowing students to lead the discussion. We call this survey methodology \"Student Directed Discussion Surveys\" (SDDS). SDDS retain the ability to provide quantified, structured, and directed results by employing Natural Language Processing (NLP). We confirm the accuracy of SDDS in relation to traditional Likert scaled surveys with a permutation test, assessing a negligible statistical difference between SDDS and Likert surveys using real data. We then show the utility of SDDS by employing word frequency and sentiment analysis, providing important unbiased decision making information, which is limited when traditional Likert scaled surveys are administered.","PeriodicalId":416113,"journal":{"name":"2018 Second IEEE International Conference on Robotic Computing (IRC)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Improving Student Surveys with Natural Language Processing\",\"authors\":\"Karoline Hood, Patrick K. Kuiper\",\"doi\":\"10.1109/IRC.2018.00079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stakeholders from academic institutions across the world employ surveys to assess the quality of their work. With surveys these stakeholders attempt to obtain quantified, structured, and directed data in order to make decisions. Often these stakeholders employ long, directed Likert scaled surveys to gain this information. We propose an alternate construction for academic surveys, where stakeholders provide 1-3 open ended \\\"free text\\\" questions, allowing students to lead the discussion. We call this survey methodology \\\"Student Directed Discussion Surveys\\\" (SDDS). SDDS retain the ability to provide quantified, structured, and directed results by employing Natural Language Processing (NLP). We confirm the accuracy of SDDS in relation to traditional Likert scaled surveys with a permutation test, assessing a negligible statistical difference between SDDS and Likert surveys using real data. We then show the utility of SDDS by employing word frequency and sentiment analysis, providing important unbiased decision making information, which is limited when traditional Likert scaled surveys are administered.\",\"PeriodicalId\":416113,\"journal\":{\"name\":\"2018 Second IEEE International Conference on Robotic Computing (IRC)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Second IEEE International Conference on Robotic Computing (IRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRC.2018.00079\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Second IEEE International Conference on Robotic Computing (IRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRC.2018.00079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

来自世界各地学术机构的利益相关者采用调查来评估他们的工作质量。通过调查,这些利益相关者试图获得量化的、结构化的和定向的数据,以便做出决策。通常,这些利益相关者采用长期的、直接的李克特规模调查来获得这些信息。我们提出了一种学术调查的替代结构,利益相关者提供1-3个开放式的“自由文本”问题,让学生主导讨论。我们称这种调查方法为“学生导向讨论调查”(SDDS)。SDDS通过使用自然语言处理(NLP)保留了提供量化、结构化和定向结果的能力。我们通过排列检验确认了SDDS与传统李克特量表调查的准确性,评估了SDDS与使用真实数据的李克特调查之间可忽略不计的统计差异。然后,我们通过使用词频和情感分析来展示SDDS的效用,提供重要的公正决策信息,这在传统的李克特量表调查中是有限的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving Student Surveys with Natural Language Processing
Stakeholders from academic institutions across the world employ surveys to assess the quality of their work. With surveys these stakeholders attempt to obtain quantified, structured, and directed data in order to make decisions. Often these stakeholders employ long, directed Likert scaled surveys to gain this information. We propose an alternate construction for academic surveys, where stakeholders provide 1-3 open ended "free text" questions, allowing students to lead the discussion. We call this survey methodology "Student Directed Discussion Surveys" (SDDS). SDDS retain the ability to provide quantified, structured, and directed results by employing Natural Language Processing (NLP). We confirm the accuracy of SDDS in relation to traditional Likert scaled surveys with a permutation test, assessing a negligible statistical difference between SDDS and Likert surveys using real data. We then show the utility of SDDS by employing word frequency and sentiment analysis, providing important unbiased decision making information, which is limited when traditional Likert scaled surveys are administered.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信