模糊逻辑监督下的间接自适应模型预测控制鲁棒性分析

J. Mamboundou, N. Langlois
{"title":"模糊逻辑监督下的间接自适应模型预测控制鲁棒性分析","authors":"J. Mamboundou, N. Langlois","doi":"10.1109/ICIT.2012.6209952","DOIUrl":null,"url":null,"abstract":"In this paper, we consider a diesel generator represented by two models according to its operating points. The first model is an unstable and minimum phase system while the second one is a stable and non-minimum phase system. Knowing that the operating point change can affect the output plant behavior negatively, we want to study two control strategies applied to this plant. Specifically, the control robustness is analyzed regarding the model switching. The first strategy estimates online the plant model parameters while the second one reconfigures the initial tuning parameters of model predictive control. In fact, one adds to the model adaptation a fuzzy logic supervisor which performs the second adaptation regarding measurable performance criteria. Finally, we consider inequality constraints on the control signal, its variation and the output signal to highlight the relevance of our approach.","PeriodicalId":365141,"journal":{"name":"2012 IEEE International Conference on Industrial Technology","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Robustness analysis of indirect adaptive model predictive control supervised by fuzzy logic\",\"authors\":\"J. Mamboundou, N. Langlois\",\"doi\":\"10.1109/ICIT.2012.6209952\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider a diesel generator represented by two models according to its operating points. The first model is an unstable and minimum phase system while the second one is a stable and non-minimum phase system. Knowing that the operating point change can affect the output plant behavior negatively, we want to study two control strategies applied to this plant. Specifically, the control robustness is analyzed regarding the model switching. The first strategy estimates online the plant model parameters while the second one reconfigures the initial tuning parameters of model predictive control. In fact, one adds to the model adaptation a fuzzy logic supervisor which performs the second adaptation regarding measurable performance criteria. Finally, we consider inequality constraints on the control signal, its variation and the output signal to highlight the relevance of our approach.\",\"PeriodicalId\":365141,\"journal\":{\"name\":\"2012 IEEE International Conference on Industrial Technology\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Conference on Industrial Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIT.2012.6209952\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Industrial Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIT.2012.6209952","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文根据柴油机的工作点,考虑用两种模型表示的柴油机。第一个模型是一个不稳定的最小相位系统,第二个模型是一个稳定的非最小相位系统。考虑到工作点的变化会对输出装置的行为产生负面影响,我们想研究适用于该装置的两种控制策略。具体来说,分析了模型切换控制的鲁棒性。第一种策略在线估计对象模型参数,第二种策略重新配置模型预测控制的初始整定参数。实际上,在模型自适应中添加了一个模糊逻辑监督器,该监督器根据可度量的性能标准执行第二次自适应。最后,我们考虑了控制信号、其变化和输出信号的不等式约束,以突出我们方法的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robustness analysis of indirect adaptive model predictive control supervised by fuzzy logic
In this paper, we consider a diesel generator represented by two models according to its operating points. The first model is an unstable and minimum phase system while the second one is a stable and non-minimum phase system. Knowing that the operating point change can affect the output plant behavior negatively, we want to study two control strategies applied to this plant. Specifically, the control robustness is analyzed regarding the model switching. The first strategy estimates online the plant model parameters while the second one reconfigures the initial tuning parameters of model predictive control. In fact, one adds to the model adaptation a fuzzy logic supervisor which performs the second adaptation regarding measurable performance criteria. Finally, we consider inequality constraints on the control signal, its variation and the output signal to highlight the relevance of our approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信