基于凸化控制障碍函数的动态障碍物运动规划

Varun V. P., Abraham P. Vinod, Shishir N. Y. Kolathaya
{"title":"基于凸化控制障碍函数的动态障碍物运动规划","authors":"Varun V. P., Abraham P. Vinod, Shishir N. Y. Kolathaya","doi":"10.1109/ICC54714.2021.9703149","DOIUrl":null,"url":null,"abstract":"Model Predictive Control (MPC) is a popular approach used for motion planning in dynamical systems. Given a finite horizon cost, we seek an optimal control law subject to safety constraints. However, in the presence of obstacles, existing MPC formulations are often slow and may lead to infeasibility. We propose a real-time implementable MPC formulation using control barrier functions (CBF) and successive convexification. We represent the non-convex obstacle avoidance constraints using CBFs that ensure that a feasible solution always exists. We then reformulate the non-convex optimal control problem using successive convexification to enable the use of computationally-efficient conic solvers. Our approach enables controller synthesis at real-time, which is difficult with existing approaches that rely on nonlinear solvers. We demonstrate the method in simulation, where we navigate a UAV to a target while avoiding dynamic obstacles in the environment.","PeriodicalId":382373,"journal":{"name":"2021 Seventh Indian Control Conference (ICC)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Motion Planning With Dynamic Obstacles Using Convexified Control Barrier Functions\",\"authors\":\"Varun V. P., Abraham P. Vinod, Shishir N. Y. Kolathaya\",\"doi\":\"10.1109/ICC54714.2021.9703149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Model Predictive Control (MPC) is a popular approach used for motion planning in dynamical systems. Given a finite horizon cost, we seek an optimal control law subject to safety constraints. However, in the presence of obstacles, existing MPC formulations are often slow and may lead to infeasibility. We propose a real-time implementable MPC formulation using control barrier functions (CBF) and successive convexification. We represent the non-convex obstacle avoidance constraints using CBFs that ensure that a feasible solution always exists. We then reformulate the non-convex optimal control problem using successive convexification to enable the use of computationally-efficient conic solvers. Our approach enables controller synthesis at real-time, which is difficult with existing approaches that rely on nonlinear solvers. We demonstrate the method in simulation, where we navigate a UAV to a target while avoiding dynamic obstacles in the environment.\",\"PeriodicalId\":382373,\"journal\":{\"name\":\"2021 Seventh Indian Control Conference (ICC)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Seventh Indian Control Conference (ICC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICC54714.2021.9703149\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Seventh Indian Control Conference (ICC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICC54714.2021.9703149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

模型预测控制(MPC)是一种用于动态系统运动规划的常用方法。给定一个有限的水平代价,我们寻求一个受安全约束的最优控制律。然而,在存在障碍的情况下,现有的MPC方案往往是缓慢的,可能导致不可行。我们提出了一种利用控制势垒函数(CBF)和连续凸化的实时可实现的MPC公式。我们使用cbf来表示非凸避障约束,以确保可行解总是存在。然后,我们使用连续凸化来重新表述非凸最优控制问题,以便使用计算效率高的二次解算器。我们的方法可以实现控制器的实时合成,这对于依赖非线性解算器的现有方法来说是困难的。我们在仿真中演示了该方法,其中我们将无人机导航到目标,同时避开环境中的动态障碍物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Motion Planning With Dynamic Obstacles Using Convexified Control Barrier Functions
Model Predictive Control (MPC) is a popular approach used for motion planning in dynamical systems. Given a finite horizon cost, we seek an optimal control law subject to safety constraints. However, in the presence of obstacles, existing MPC formulations are often slow and may lead to infeasibility. We propose a real-time implementable MPC formulation using control barrier functions (CBF) and successive convexification. We represent the non-convex obstacle avoidance constraints using CBFs that ensure that a feasible solution always exists. We then reformulate the non-convex optimal control problem using successive convexification to enable the use of computationally-efficient conic solvers. Our approach enables controller synthesis at real-time, which is difficult with existing approaches that rely on nonlinear solvers. We demonstrate the method in simulation, where we navigate a UAV to a target while avoiding dynamic obstacles in the environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信