基于模糊集理论的植物物种识别

A. Nabout, R. Gerhards, B. Su, H. A. Nour Eldin, W. Kuhbauch
{"title":"基于模糊集理论的植物物种识别","authors":"A. Nabout, R. Gerhards, B. Su, H. A. Nour Eldin, W. Kuhbauch","doi":"10.1109/IAI.1994.336686","DOIUrl":null,"url":null,"abstract":"The automatic identification of plant species is a great challenge because their patterns are complex and uncertain. In this paper, the fuzzy set theory was applied to identify weed species. A membership function was established. The experiment has shown, that the average rate of correct identification has improved from 67% to greater than 82%.<<ETX>>","PeriodicalId":438137,"journal":{"name":"Proceedings of the IEEE Southwest Symposium on Image Analysis and Interpretation","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Plant species identification using fuzzy set theory\",\"authors\":\"A. Nabout, R. Gerhards, B. Su, H. A. Nour Eldin, W. Kuhbauch\",\"doi\":\"10.1109/IAI.1994.336686\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The automatic identification of plant species is a great challenge because their patterns are complex and uncertain. In this paper, the fuzzy set theory was applied to identify weed species. A membership function was established. The experiment has shown, that the average rate of correct identification has improved from 67% to greater than 82%.<<ETX>>\",\"PeriodicalId\":438137,\"journal\":{\"name\":\"Proceedings of the IEEE Southwest Symposium on Image Analysis and Interpretation\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the IEEE Southwest Symposium on Image Analysis and Interpretation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IAI.1994.336686\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE Southwest Symposium on Image Analysis and Interpretation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAI.1994.336686","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

植物种类的自动识别是一个巨大的挑战,因为它们的模式是复杂的和不确定的。本文将模糊集理论应用于杂草种类识别。建立了隶属函数。实验表明,平均正确率从67%提高到82%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Plant species identification using fuzzy set theory
The automatic identification of plant species is a great challenge because their patterns are complex and uncertain. In this paper, the fuzzy set theory was applied to identify weed species. A membership function was established. The experiment has shown, that the average rate of correct identification has improved from 67% to greater than 82%.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信