基于改进Bp神经网络的软件可靠性模型研究

Li Mei
{"title":"基于改进Bp神经网络的软件可靠性模型研究","authors":"Li Mei","doi":"10.1109/ICSGEA.2018.00061","DOIUrl":null,"url":null,"abstract":"Neural network has good fault-tolerant ability, classification ability, parallel processing ability and so on, so the research of software reliability model based on neural network is paid more and more attention. Bp neural network has strong nonlinear mapping ability and flexible network structure, so BP neural network is currently used in various fields. In this paper, a software reliability model optimized by hidden layer BP neural network is proposed and the training process of BP algorithm on this model is described.","PeriodicalId":445324,"journal":{"name":"2018 International Conference on Smart Grid and Electrical Automation (ICSGEA)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Research on Software Reliability Model Based on Improved Bp Neural Network\",\"authors\":\"Li Mei\",\"doi\":\"10.1109/ICSGEA.2018.00061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neural network has good fault-tolerant ability, classification ability, parallel processing ability and so on, so the research of software reliability model based on neural network is paid more and more attention. Bp neural network has strong nonlinear mapping ability and flexible network structure, so BP neural network is currently used in various fields. In this paper, a software reliability model optimized by hidden layer BP neural network is proposed and the training process of BP algorithm on this model is described.\",\"PeriodicalId\":445324,\"journal\":{\"name\":\"2018 International Conference on Smart Grid and Electrical Automation (ICSGEA)\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Smart Grid and Electrical Automation (ICSGEA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSGEA.2018.00061\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Smart Grid and Electrical Automation (ICSGEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSGEA.2018.00061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

神经网络具有良好的容错能力、分类能力、并行处理能力等特点,因此基于神经网络的软件可靠性模型的研究越来越受到重视。Bp神经网络具有较强的非线性映射能力和灵活的网络结构,因此Bp神经网络目前应用于各个领域。提出了一种基于隐层BP神经网络优化的软件可靠性模型,并描述了BP算法在该模型上的训练过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on Software Reliability Model Based on Improved Bp Neural Network
Neural network has good fault-tolerant ability, classification ability, parallel processing ability and so on, so the research of software reliability model based on neural network is paid more and more attention. Bp neural network has strong nonlinear mapping ability and flexible network structure, so BP neural network is currently used in various fields. In this paper, a software reliability model optimized by hidden layer BP neural network is proposed and the training process of BP algorithm on this model is described.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信