NNFRM:将模糊推理模型解释为模糊推理模型的一般情况的神经新模糊推理模型

M. Tayel, Marwah Abd Elmonem
{"title":"NNFRM:将模糊推理模型解释为模糊推理模型的一般情况的神经新模糊推理模型","authors":"M. Tayel, Marwah Abd Elmonem","doi":"10.1109/NRSC.2000.838958","DOIUrl":null,"url":null,"abstract":"An interpretation of the new fuzzy reasoning model (NFRM) is developed. This interpretation makes the traditional fuzzy reasoning model (FRM) a special case under certain conditions. In addition, a neural network is constructed to represent the NFRM. The proposed neuro-new fuzzy reasoning model (NNFRM) optimizes the parameters of the NFRM by using the well-known backpropagation concept. The parameters to be optimized are those of the input membership functions, output membership function and relation matrix. The proposed NNFRM is used to predict future values of a chaotic time series, which is considered a benchmark problem. It is shown that the proposed NNFRM outperforms other modeling methods in prediction of this chaotic time series. The NNFRM used here has fewer adjustable parameters, than those used in other modeling techniques.","PeriodicalId":211510,"journal":{"name":"Proceedings of the Seventeenth National Radio Science Conference. 17th NRSC'2000 (IEEE Cat. No.00EX396)","volume":"116 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"NNFRM: neuro-new fuzzy reasoning model interpreted as general case of fuzzy reasoning model\",\"authors\":\"M. Tayel, Marwah Abd Elmonem\",\"doi\":\"10.1109/NRSC.2000.838958\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An interpretation of the new fuzzy reasoning model (NFRM) is developed. This interpretation makes the traditional fuzzy reasoning model (FRM) a special case under certain conditions. In addition, a neural network is constructed to represent the NFRM. The proposed neuro-new fuzzy reasoning model (NNFRM) optimizes the parameters of the NFRM by using the well-known backpropagation concept. The parameters to be optimized are those of the input membership functions, output membership function and relation matrix. The proposed NNFRM is used to predict future values of a chaotic time series, which is considered a benchmark problem. It is shown that the proposed NNFRM outperforms other modeling methods in prediction of this chaotic time series. The NNFRM used here has fewer adjustable parameters, than those used in other modeling techniques.\",\"PeriodicalId\":211510,\"journal\":{\"name\":\"Proceedings of the Seventeenth National Radio Science Conference. 17th NRSC'2000 (IEEE Cat. No.00EX396)\",\"volume\":\"116 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Seventeenth National Radio Science Conference. 17th NRSC'2000 (IEEE Cat. No.00EX396)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NRSC.2000.838958\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Seventeenth National Radio Science Conference. 17th NRSC'2000 (IEEE Cat. No.00EX396)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NRSC.2000.838958","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

对新的模糊推理模型(NFRM)进行了解释。这种解释使得传统的模糊推理模型(FRM)在一定条件下成为特例。此外,构造了一个神经网络来表示NFRM。提出的神经新型模糊推理模型(NNFRM)利用众所周知的反向传播概念对NFRM的参数进行优化。待优化的参数为输入隶属函数、输出隶属函数和关系矩阵的参数。该方法用于混沌时间序列的未来值预测,将混沌时间序列视为基准问题。结果表明,该方法对该混沌时间序列的预测效果优于其他建模方法。与其他建模技术相比,这里使用的NNFRM具有更少的可调参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
NNFRM: neuro-new fuzzy reasoning model interpreted as general case of fuzzy reasoning model
An interpretation of the new fuzzy reasoning model (NFRM) is developed. This interpretation makes the traditional fuzzy reasoning model (FRM) a special case under certain conditions. In addition, a neural network is constructed to represent the NFRM. The proposed neuro-new fuzzy reasoning model (NNFRM) optimizes the parameters of the NFRM by using the well-known backpropagation concept. The parameters to be optimized are those of the input membership functions, output membership function and relation matrix. The proposed NNFRM is used to predict future values of a chaotic time series, which is considered a benchmark problem. It is shown that the proposed NNFRM outperforms other modeling methods in prediction of this chaotic time series. The NNFRM used here has fewer adjustable parameters, than those used in other modeling techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信