{"title":"NNFRM:将模糊推理模型解释为模糊推理模型的一般情况的神经新模糊推理模型","authors":"M. Tayel, Marwah Abd Elmonem","doi":"10.1109/NRSC.2000.838958","DOIUrl":null,"url":null,"abstract":"An interpretation of the new fuzzy reasoning model (NFRM) is developed. This interpretation makes the traditional fuzzy reasoning model (FRM) a special case under certain conditions. In addition, a neural network is constructed to represent the NFRM. The proposed neuro-new fuzzy reasoning model (NNFRM) optimizes the parameters of the NFRM by using the well-known backpropagation concept. The parameters to be optimized are those of the input membership functions, output membership function and relation matrix. The proposed NNFRM is used to predict future values of a chaotic time series, which is considered a benchmark problem. It is shown that the proposed NNFRM outperforms other modeling methods in prediction of this chaotic time series. The NNFRM used here has fewer adjustable parameters, than those used in other modeling techniques.","PeriodicalId":211510,"journal":{"name":"Proceedings of the Seventeenth National Radio Science Conference. 17th NRSC'2000 (IEEE Cat. No.00EX396)","volume":"116 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"NNFRM: neuro-new fuzzy reasoning model interpreted as general case of fuzzy reasoning model\",\"authors\":\"M. Tayel, Marwah Abd Elmonem\",\"doi\":\"10.1109/NRSC.2000.838958\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An interpretation of the new fuzzy reasoning model (NFRM) is developed. This interpretation makes the traditional fuzzy reasoning model (FRM) a special case under certain conditions. In addition, a neural network is constructed to represent the NFRM. The proposed neuro-new fuzzy reasoning model (NNFRM) optimizes the parameters of the NFRM by using the well-known backpropagation concept. The parameters to be optimized are those of the input membership functions, output membership function and relation matrix. The proposed NNFRM is used to predict future values of a chaotic time series, which is considered a benchmark problem. It is shown that the proposed NNFRM outperforms other modeling methods in prediction of this chaotic time series. The NNFRM used here has fewer adjustable parameters, than those used in other modeling techniques.\",\"PeriodicalId\":211510,\"journal\":{\"name\":\"Proceedings of the Seventeenth National Radio Science Conference. 17th NRSC'2000 (IEEE Cat. No.00EX396)\",\"volume\":\"116 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Seventeenth National Radio Science Conference. 17th NRSC'2000 (IEEE Cat. No.00EX396)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NRSC.2000.838958\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Seventeenth National Radio Science Conference. 17th NRSC'2000 (IEEE Cat. No.00EX396)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NRSC.2000.838958","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
NNFRM: neuro-new fuzzy reasoning model interpreted as general case of fuzzy reasoning model
An interpretation of the new fuzzy reasoning model (NFRM) is developed. This interpretation makes the traditional fuzzy reasoning model (FRM) a special case under certain conditions. In addition, a neural network is constructed to represent the NFRM. The proposed neuro-new fuzzy reasoning model (NNFRM) optimizes the parameters of the NFRM by using the well-known backpropagation concept. The parameters to be optimized are those of the input membership functions, output membership function and relation matrix. The proposed NNFRM is used to predict future values of a chaotic time series, which is considered a benchmark problem. It is shown that the proposed NNFRM outperforms other modeling methods in prediction of this chaotic time series. The NNFRM used here has fewer adjustable parameters, than those used in other modeling techniques.