基于置换问题的区间岛模型初始化

M. Mehdi, N. Melab, E. Talbi, P. Bouvry
{"title":"基于置换问题的区间岛模型初始化","authors":"M. Mehdi, N. Melab, E. Talbi, P. Bouvry","doi":"10.1145/1569901.1570236","DOIUrl":null,"url":null,"abstract":"In the absence of a priori knowledge about global optima, initial populations in genetic algorithms (GAs) should at least be diversified, especially while dealing with large spaces. On the other hand, the use of parallel models for GAs helps to solve large instances. We will focus on the island model. In this paper we propose an island initialization technique for permutation-based problems. We exploit a virtual tree organisation commonly used in exact methods (Branch and Bound) to generate a fully disjoint and well distributed (over the search space) initial population in each island. This method can be used for all permutation-based problems (QAP, Flow-shop, Q3AP..). regardless of the number of permutations. Experiments are performed over Q3AP benchmarks using a $10$ island model. The results shows the efficiency of the proposed method especially for large instances.","PeriodicalId":193093,"journal":{"name":"Proceedings of the 11th Annual conference on Genetic and evolutionary computation","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Interval island model initialization for permutation-based problems\",\"authors\":\"M. Mehdi, N. Melab, E. Talbi, P. Bouvry\",\"doi\":\"10.1145/1569901.1570236\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the absence of a priori knowledge about global optima, initial populations in genetic algorithms (GAs) should at least be diversified, especially while dealing with large spaces. On the other hand, the use of parallel models for GAs helps to solve large instances. We will focus on the island model. In this paper we propose an island initialization technique for permutation-based problems. We exploit a virtual tree organisation commonly used in exact methods (Branch and Bound) to generate a fully disjoint and well distributed (over the search space) initial population in each island. This method can be used for all permutation-based problems (QAP, Flow-shop, Q3AP..). regardless of the number of permutations. Experiments are performed over Q3AP benchmarks using a $10$ island model. The results shows the efficiency of the proposed method especially for large instances.\",\"PeriodicalId\":193093,\"journal\":{\"name\":\"Proceedings of the 11th Annual conference on Genetic and evolutionary computation\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 11th Annual conference on Genetic and evolutionary computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1569901.1570236\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th Annual conference on Genetic and evolutionary computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1569901.1570236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在缺乏全局最优的先验知识的情况下,遗传算法中的初始种群至少应该是多样化的,特别是在处理大空间时。另一方面,对GAs使用并行模型有助于解决大型实例。我们将重点讨论岛屿模型。本文提出了一种基于置换问题的孤岛初始化技术。我们利用精确方法(分支和边界)中常用的虚拟树组织来生成每个岛屿上完全不相交且分布良好的初始种群(在搜索空间上)。该方法可用于所有基于排列的问题(QAP、Flow-shop、Q3AP等)。不管有多少种排列。实验是在Q3AP基准测试中使用$10$岛模型进行的。实验结果表明了该方法的有效性,特别是对于大型实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interval island model initialization for permutation-based problems
In the absence of a priori knowledge about global optima, initial populations in genetic algorithms (GAs) should at least be diversified, especially while dealing with large spaces. On the other hand, the use of parallel models for GAs helps to solve large instances. We will focus on the island model. In this paper we propose an island initialization technique for permutation-based problems. We exploit a virtual tree organisation commonly used in exact methods (Branch and Bound) to generate a fully disjoint and well distributed (over the search space) initial population in each island. This method can be used for all permutation-based problems (QAP, Flow-shop, Q3AP..). regardless of the number of permutations. Experiments are performed over Q3AP benchmarks using a $10$ island model. The results shows the efficiency of the proposed method especially for large instances.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信