联想学习的未来

J. Andreae
{"title":"联想学习的未来","authors":"J. Andreae","doi":"10.1109/ANNES.1995.499470","DOIUrl":null,"url":null,"abstract":"Research into associative learning has been under taboo within AI for more than three decades. The author argues that the prospects of associative learning are too good for this to be allowed to continue. He discusses the development of STeLLA learning robot, PURR-PUSS system and the application of the CMAC neural network.","PeriodicalId":123427,"journal":{"name":"Proceedings 1995 Second New Zealand International Two-Stream Conference on Artificial Neural Networks and Expert Systems","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The future of associative learning\",\"authors\":\"J. Andreae\",\"doi\":\"10.1109/ANNES.1995.499470\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Research into associative learning has been under taboo within AI for more than three decades. The author argues that the prospects of associative learning are too good for this to be allowed to continue. He discusses the development of STeLLA learning robot, PURR-PUSS system and the application of the CMAC neural network.\",\"PeriodicalId\":123427,\"journal\":{\"name\":\"Proceedings 1995 Second New Zealand International Two-Stream Conference on Artificial Neural Networks and Expert Systems\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 1995 Second New Zealand International Two-Stream Conference on Artificial Neural Networks and Expert Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ANNES.1995.499470\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 1995 Second New Zealand International Two-Stream Conference on Artificial Neural Networks and Expert Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANNES.1995.499470","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

30多年来,联想学习的研究一直是人工智能领域的禁忌。作者认为,联想学习的前景太好了,不能让这种情况继续下去。他讨论了STeLLA学习机器人、PURR-PUSS系统的发展以及CMAC神经网络的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The future of associative learning
Research into associative learning has been under taboo within AI for more than three decades. The author argues that the prospects of associative learning are too good for this to be allowed to continue. He discusses the development of STeLLA learning robot, PURR-PUSS system and the application of the CMAC neural network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信