参数N对Laplace变换数值反演的Fixed-Talbot算法的影响

George Ricardo Libardi Calixto, E. Freitas, Juciara Alves Ferreira, B. Rodriguez, J. F. Prolo Filho
{"title":"参数N对Laplace变换数值反演的Fixed-Talbot算法的影响","authors":"George Ricardo Libardi Calixto, E. Freitas, Juciara Alves Ferreira, B. Rodriguez, J. F. Prolo Filho","doi":"10.14295/vetor.v32i1.13754","DOIUrl":null,"url":null,"abstract":"In this paper, Fixed-Talbot method computational aspects are explored for Laplace Transform numerical inversion and its efficiency in the treatment of a set of elementary functions of an exponential, oscillatory and logarithmic nature, based on the influence investigation of free parameter N. The numerical results are compared to the analytical solution while calculating the absolute error. The best value for N was determined in each studied function class, where the method presents satisfactory results. It was observed that increasing the number of terms in the summation for approximation (beyond the optimal value) doesn’t imply obtaining more refined results. In general, based on the data obtained, it was concluded that Fixed-Talbot method is efficient for the inversion of all classes of elementary functions evaluated in this article.","PeriodicalId":258655,"journal":{"name":"VETOR - Revista de Ciências Exatas e Engenharias","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parameter N Influence on the Fixed-Talbot Algorithm for the Laplace Transform Numerical Inversion\",\"authors\":\"George Ricardo Libardi Calixto, E. Freitas, Juciara Alves Ferreira, B. Rodriguez, J. F. Prolo Filho\",\"doi\":\"10.14295/vetor.v32i1.13754\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, Fixed-Talbot method computational aspects are explored for Laplace Transform numerical inversion and its efficiency in the treatment of a set of elementary functions of an exponential, oscillatory and logarithmic nature, based on the influence investigation of free parameter N. The numerical results are compared to the analytical solution while calculating the absolute error. The best value for N was determined in each studied function class, where the method presents satisfactory results. It was observed that increasing the number of terms in the summation for approximation (beyond the optimal value) doesn’t imply obtaining more refined results. In general, based on the data obtained, it was concluded that Fixed-Talbot method is efficient for the inversion of all classes of elementary functions evaluated in this article.\",\"PeriodicalId\":258655,\"journal\":{\"name\":\"VETOR - Revista de Ciências Exatas e Engenharias\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"VETOR - Revista de Ciências Exatas e Engenharias\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14295/vetor.v32i1.13754\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"VETOR - Revista de Ciências Exatas e Engenharias","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14295/vetor.v32i1.13754","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文在研究自由参数n对拉普拉斯变换数值反演的影响的基础上,探讨了固定- talbot方法在拉普拉斯变换数值反演中的计算方面及其在处理指数、振荡和对数性质的一组初等函数时的效率。在计算绝对误差时,将数值结果与解析解进行了比较。在每个所研究的函数类中确定了N的最佳值,在这些函数类中,该方法给出了令人满意的结果。我们观察到,增加求和中的项数来逼近(超过最优值)并不意味着得到更精确的结果。总的来说,根据得到的数据,可以得出固定- talbot方法对于本文求出的所有类初等函数的反演都是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parameter N Influence on the Fixed-Talbot Algorithm for the Laplace Transform Numerical Inversion
In this paper, Fixed-Talbot method computational aspects are explored for Laplace Transform numerical inversion and its efficiency in the treatment of a set of elementary functions of an exponential, oscillatory and logarithmic nature, based on the influence investigation of free parameter N. The numerical results are compared to the analytical solution while calculating the absolute error. The best value for N was determined in each studied function class, where the method presents satisfactory results. It was observed that increasing the number of terms in the summation for approximation (beyond the optimal value) doesn’t imply obtaining more refined results. In general, based on the data obtained, it was concluded that Fixed-Talbot method is efficient for the inversion of all classes of elementary functions evaluated in this article.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信