{"title":"有限力量——战略防御博弈的计算复杂性结果","authors":"Ronald de Haan, Petra Wolf","doi":"10.4230/LIPIcs.FUN.2018.17","DOIUrl":null,"url":null,"abstract":"We study the game Greedy Spiders, a two-player strategic defense game, on planar graphs and show PSPACE-completeness for the problem of deciding whether one player has a winning strategy for a given instance of the game. We also generalize our results in metatheorems, which consider a large set of strategic defense games. We achieve more detailed complexity results by restricting the possible strategies of one of the players, which leads us to Sigma^p_2- and Pi^p_2-hardness results.","PeriodicalId":293763,"journal":{"name":"Fun with Algorithms","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Restricted Power - Computational Complexity Results for Strategic Defense Games\",\"authors\":\"Ronald de Haan, Petra Wolf\",\"doi\":\"10.4230/LIPIcs.FUN.2018.17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the game Greedy Spiders, a two-player strategic defense game, on planar graphs and show PSPACE-completeness for the problem of deciding whether one player has a winning strategy for a given instance of the game. We also generalize our results in metatheorems, which consider a large set of strategic defense games. We achieve more detailed complexity results by restricting the possible strategies of one of the players, which leads us to Sigma^p_2- and Pi^p_2-hardness results.\",\"PeriodicalId\":293763,\"journal\":{\"name\":\"Fun with Algorithms\",\"volume\":\"79 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fun with Algorithms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.FUN.2018.17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fun with Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.FUN.2018.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Restricted Power - Computational Complexity Results for Strategic Defense Games
We study the game Greedy Spiders, a two-player strategic defense game, on planar graphs and show PSPACE-completeness for the problem of deciding whether one player has a winning strategy for a given instance of the game. We also generalize our results in metatheorems, which consider a large set of strategic defense games. We achieve more detailed complexity results by restricting the possible strategies of one of the players, which leads us to Sigma^p_2- and Pi^p_2-hardness results.