有限力量——战略防御博弈的计算复杂性结果

Ronald de Haan, Petra Wolf
{"title":"有限力量——战略防御博弈的计算复杂性结果","authors":"Ronald de Haan, Petra Wolf","doi":"10.4230/LIPIcs.FUN.2018.17","DOIUrl":null,"url":null,"abstract":"We study the game Greedy Spiders, a two-player strategic defense game, on planar graphs and show PSPACE-completeness for the problem of deciding whether one player has a winning strategy for a given instance of the game. We also generalize our results in metatheorems, which consider a large set of strategic defense games. We achieve more detailed complexity results by restricting the possible strategies of one of the players, which leads us to Sigma^p_2- and Pi^p_2-hardness results.","PeriodicalId":293763,"journal":{"name":"Fun with Algorithms","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Restricted Power - Computational Complexity Results for Strategic Defense Games\",\"authors\":\"Ronald de Haan, Petra Wolf\",\"doi\":\"10.4230/LIPIcs.FUN.2018.17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the game Greedy Spiders, a two-player strategic defense game, on planar graphs and show PSPACE-completeness for the problem of deciding whether one player has a winning strategy for a given instance of the game. We also generalize our results in metatheorems, which consider a large set of strategic defense games. We achieve more detailed complexity results by restricting the possible strategies of one of the players, which leads us to Sigma^p_2- and Pi^p_2-hardness results.\",\"PeriodicalId\":293763,\"journal\":{\"name\":\"Fun with Algorithms\",\"volume\":\"79 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fun with Algorithms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.FUN.2018.17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fun with Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.FUN.2018.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们在平面图上研究了贪心蜘蛛(Greedy spider)这一二人策略防御博弈,并证明了在给定的博弈实例中判定一个玩家是否有获胜策略的pspace -完备性问题。我们还在元定理中推广了我们的结果,这些元定理考虑了大量的战略防御博弈。通过限制其中一个参与者的可能策略,我们获得了更详细的复杂性结果,这导致我们得到Sigma^p_2-和Pi^p_2-硬度结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Restricted Power - Computational Complexity Results for Strategic Defense Games
We study the game Greedy Spiders, a two-player strategic defense game, on planar graphs and show PSPACE-completeness for the problem of deciding whether one player has a winning strategy for a given instance of the game. We also generalize our results in metatheorems, which consider a large set of strategic defense games. We achieve more detailed complexity results by restricting the possible strategies of one of the players, which leads us to Sigma^p_2- and Pi^p_2-hardness results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信